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ABSTRACT

In mine planning, metallurgical recovery is traditionally estimated in each block as a fixed value
or a function of the block’s primary geological attributes. Nevertheless, this variable has two
characteristics that are often neglected. First, it is non-additive, which means that estimation
and scaling procedures of such properties cannot be done based on linear techniques.
Second, it is a process response variable, which means this variable value represents the
response of the volume processed at the plant. The combination of these two properties
results that the metallurgical recovery of each block is dependent on the blocks that will be
mined and processed together with it at the plant. This paper demonstrates the difference
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between how metallurgical recovery is traditionally considered in mine planning, and how it
should be. There are impacts on mine scheduling/blending, global metallurgical recovery
estimation (total quantity of metal recovered) and total economic value.

Introduction
Mine planning

Commonly, one of the main objectives of mine plan-
ning is developing a production schedule that maxi-
mizes the project’s Net Present Value (NPV), subject
to technological, operational, environmental, legal,
and social constraints. Usually, the mineral deposit is
represented by a set of regular three-dimensional
blocks (mining blocks), each one of them containing
estimated geological information such as grade, den-
sity, lithology, alteration, among others. These intrin-
sic rock properties are termed primary variables
(Coward et al. 2009) and are often estimated through
geostatistical techniques from drill-hole data.

In metallic mines, the ore is seldom mined in an
acceptable form to be sold and used by different indus-
tries. Therefore, ore processing must concentrate the
valuable metallic product and clean it from deleterious
elements. A response variable measures the material
response to a specific process. Metallurgical recovery
is the response variable that measures the metal con-
centration process efficiency and, as well as geological
variables, it is also estimated in each mining block.
Traditionally, the metallurgical variable value is con-
sidered constant for every mining block in a particular
domain or is estimated as a function of the primary
geological attributes of each block, such as its grade.

Other variables can be assigned to each mining
block, such as economic variables, e.g. commodity

price and mining and processing associated costs.
Along with the geological, process, and economic vari-
ables, the profit of mining and processing each block
can be assessed through the economic benefit func-
tion. Mine planners use this economic benefit as a
guide to define the block schedule, the order in
which they should mine each block. Usually, the econ-
omic high-value blocks are mined before the low-
value blocks. The idea is to obtain the highest revenue
quickly to improve the project’s NPV.

Besides aiming at optimizing economic value,
short-term mine planners also seek the best oper-
ational efficiency. They are concerned with blending
different blocks to provide material with specific
characteristics to the processing plant with minimum
possible variability. Blending can also cause an
increase in mineral reserves. A particular lithology
may not have the adequate characteristics to be pro-
cessed alone, but it may reach the desired quality
restrictions mixed with other lithologies. For example,
in an iron ore mine, a lithology containing low Fe
grade can be processed when combined with a high
Fe grade one (Gomes et al. 2016).

Although scheduling is performed on individual
blocks, mine operations do not extract blocks indivi-
dually (Rossi and Deutsch 2014). The ore volume
sent to the processing plant consists of several blocks
mixed. This mixture partly occurs during the drilling
and blasting operations. More mixture may occur if
the blocks are sent to a stockpile before going to the
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processing plant or intentionally blended in short-
term mine planning. The mill feed typically represents
a blend of ore from multiple locations and sources
(Wambeke et al. 2018). Dealing with mixtures of addi-
tive properties is not problematic, but that is not true
with non-additive properties, which is presented next.

Metallurgical recovery

Geometallurgy is the integration of geological, mining,
metallurgical, environmental, and economic infor-
mation into spatial models through geometallurgical
variables (Dowd et al. 2016). Metallurgical recovery
is a geometallurgical variable, historically inputted in
the spatial mining blocks as a constant mean value
of the processing plant’s efficiency. As geometallurgy
knowledge progressed, it has been clarified that geo-
metallurgical variables are related to the interaction
among  geological/physical/mineralogical/chemical
properties and industrial processes (Lishchuk et al.
2020). Hence, estimation of metal recovery based on
chemical assays or quantitative mineralogical infor-
mation became more common (Lishchuk and Petters-
son 2021). A function which relates the process
variable with primary-geological variables is a
regression model. The grade-recovery regression plot
is often used to display the metallurgical grade-recov-
ery relationship (Dunham and Vann 2007).

Metallurgical recovery, however, has two character-
istics that are often neglected when inputting it as a
value to each block in mine planning. First, it is a
non-additive variable. A variable is additive when it
can be linearly averaged and scaled up, such as grades.
For instance, consider the mixture of two blocks with
one tonne of weight each and Au grades of 1 g/t and
2 g/t, respectively. The upscaled mixture of the blocks
would result in two tonnes and an average Au grade of
1.5 g/t, the linear average of the individual blocks’
grades. When a variable is non-additive, the average
value for a mixture differs from the linear average of
individual blocks. Consequently, linear scaling up
and estimation techniques applied to this type of vari-
able may result in biased averages.

The second characteristic is that metallurgical
recovery regression models consider the volume or
support in which the metallurgical recovery has been
measured, the volume of several blocks processed by
the processing plant. This ore volume processed is
referred to here as ‘feed volume’. Applying the
regression model to a support which is different
from the support used to build the model may lead
to error and bias (Dunham and Vann 2007).

These two characteristics present a challenge for the
traditional methods of mine scheduling. Mine sche-
duling algorithms require a metallurgical recovery
value for each block. Nevertheless, the true metallurgi-
cal recovery depends on how the blocks will be mixed

during the processing. And this mixture depends on
the mine scheduling/blending, which makes the pro-
blem recursive.

Several authors have investigated geometallurgical
modelling at block support (Dunham and Vann
2007; Bye 2011; Newton and Graham 2011; Dominy
et al. 2018), how mine planning could change if
geometallurgical models were considered (Bye
2011; Del Castillo and Dimitrakopoulos 2016; Mor-
ales et al. 2019), and how to integrate geometallur-
gical uncertainty into scheduling (Navarra et al.
2018; Sepulveda et al. 2018; Kumar and Dimitrako-
poulos 2019). Nevertheless, all the authors assign
metallurgical recovery values to each block, which
assumes that each block is processed alone. As
ore processing occurs upon the feed volume sup-
port, the impact of support and non-additivity in
mixtures of blocks should be considered. The met-
allurgical recovery value assigned to each block may
either decrease or increase depending on how it is
mixed with other blocks. The blocks mixed are
the ones close to each other along with the mine
scheduling. Wambeke et al. (2018) recognize that
geometallurgical block estimates are inaccurate and
propose an algorithm to adjust them based on
mill observations. In this paper, we acknowledged
this issue and evaluated the impact of mixing
non-additive metallurgical recovery in mine
planning.

In Section 2, an illustrative example is used to
demonstrate that applying the regression model to
the block support provides different results than that
using it to the feed volume. When applying it to the
feed volume, different schedules/blendings result in
other metallurgical recoveries for each block, leading
to different global metallurgical recoveries (quantity
of metal recovered after processing all blocks) and
different economical values. This situation is what
we refer to as the recursive character of the problem.

In Section 3, an application example is used to
evaluate the non-additivity and support impacts in
mine planning when three aspects are considered:
(i) distinct support differences between block and
feed volume; (ii) different regression models;
(iii) two primary geological variables not linearly
associated with metallurgical recovery. Also, a com-
parison between the traditional approach of populating
metallurgical recovery value and its scheduling is com-
pared against a novel approach. The conventional pro-
cess starts by filling a block model with metallurgical
recovery values at the block support. Then traditional
optimization and mine scheduling algorithms are
applied to this block model. The novel approach con-
sists of an iterative procedure (remember, it is a recur-
sive problem). A possible block scheduling is
performed, followed by upscaling the additive variables
according to the feed volume. We use the proper



CMINING TECHNOLOGY 3

100
90
80
70
60
50
40
30
20
10

0]

Cu recovery (R¢,) (%)

01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16
Cu (%)

Figure 1. Regression model: copper recovery prediction based on the ROM elemental copper grade. Images are available in colour

online.

regression model on the upscaled additive variables to
obtain the metallurgical recovery at the feed volume
support. Then, the result of this scheduling is assessed.
Some other possibilities of schedules are run until a
considered optimal one is found.

In Section 4, we discuss the results of the example
presented, highlighting how to better consider metal-
lurgical recovery in mine planning.

Demonstration example

Regression model applied on block volume vs.
feed volume support.

To demonstrate that the regression model should only
be used at the feed volume and not at the mining block

“BLOCK VOLUME APPROACH”

“Grade block model”

—

“FEED VOLUME APPROACH”

—

“Cu recovery block model”

support, consider the following hypothetical example.
In a copper mine, there is only one processing route,
in which copper recovery (Rc, (%)) can be estimated
from Run of Mine (ROM) elemental copper grade
(Cu (%)) by Equation (1), visually shown in Figure 1.
This regression curve is not fictitious; it is a real esti-
mated copper recovery model from a copper mine in
Brazil (Wheaton Precious Metals 2019), used here to
bring truth likeness to the example. Note that the
relationship between recovery and grade is not linear
(not additive).

Rey (%) = 88.5 x (1 —exp(—3.5x Cu (%)) (1)

For our example, feed volume consists of one
tonne. Four ore blocks are mined in sequence and

Global Cu recovery:

2x (0.6 x 77.66%) + 2 x (1.2 x 87.17%)

(06+12+06+12)

= 84.00%

Global Cu recovery:
From the regression model:

—

=84.71%

Figure 2. Differences in how to apply the recovery curve prediction. Images are available in colour online.
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“traditional optimizing NPV”

schedule “alternative” schedule
(A) (B) © (D) (A) (B) © (D)
Cu=04% | Cu=0.5% | Cu=0.4% | Cu=0.5% Cu=04% | Cu=0.5% | Cu=0.4% | Cu=0.5%
Block
grades
(E) (F) (G) (H) (E) (F) (G) (H)
Cu=06% | Cu=1.2% | Cu=0.6% | Cu=1.2% Cu=06% | Cu=1.2% | Cu=0.6% | Cu=1.2%
ABCD
“Feed Cu=0.45%
o Re, =70.18% (ABEF) (CDGH)
and metal (EFGH) Cu=0.67% Cu=0.67%
recoveries Cu=0.9% R, = 80.16% Rc, = 80.16%
Re, = 84.71%

Global Cu (0.45 x 70.18%+0.9 x 84.71%)

recovery = (045+09) =79.86%

(0.67 x 80.16%+0.67 x 80.16%)

(0.67+0.67) = 80.16%

Figure 3. Different mixtures yield different global metal recoveries. Images are available in colour online.

processed (Figure 2). We considered that the four
blocks have different copper grades but the same
0.25 tonnes of ore mass. ‘Block volume approach’
is the traditional application of the regression
model (Equation 1) to each block grade, which
results in four estimated copper recovery values.
The mean copper recovery after processing all
blocks (global copper recovery) is 84.00%.

Now, consider the ‘feed volume approach’ in
which the four blocks are mixed, resulting in an
average copper grade of 0.9%. Applying the same
regression model on the mixed copper grade
would result in a global metallurgical recovery of
84.71%, 0.71% more in global Cu recovery. From
an economical and mine scheduling optimization
perspective, each of the four blocks used to com-
pound the mixture would have 84.71% of Cu
recovery.

The most accurate approach is the second, as it
mimics how the ore is processed in the mine oper-
ation. Once the ore arrives at the plant, there is no
longer any perception of a block but rather a blend
of extracted material (Del Castillo and Dimitrakopou-
los 2016). Deutsch (2015) demonstrated that even
when the ore is fed in batches to the processing
plant, there is enough mixing of the materials such
that mixture properties will dictate the process outputs
more than the properties of any single block.

Therefore, as metallurgical recovery is a non-addi-
tive variable, metal recovery should be estimated based
on the average grade of the feed volume (an upscaled
mixture of blocks), which differs from that assessed for
each block individually. Process responses set on a
block-level may lead to erroneous recoveries. These
differences in recovery estimation can significantly

impact mine scheduling, global metal recovery, and
total economic value.

Regression model applied on feed volume and
its impacts on schedule

Applying the regression model in the feed volume
support rather than in the block support can
change the ‘best’ block scheduling, impacting glo-
bal metal recovery and economic value. Consider
that the feed volume equals the volume of four
blocks, each one weighing the same. For the
eight blocks in Figure 3, two mixtures are to be
processed one after another in the same period.
In the ‘traditional optimizing NPV’ schedule, the
high-grade blocks are mined before the low-grade
blocks. Therefore, block E will be blended and
processed together with blocks F, G, and H. The
next feed volume is the mixture of the four
remaining blocks (A, B, C, and D). The ABCD
mixture has an average copper grade of 0.45%,
which results in a metal recovery of 70.18% by
applying the regression model. The mixture
EFGH has 0.9% of copper, resulting in a recovery
of 84.71%. After processing all blocks, global cop-
per recovery is 79.86%. However, if scheduling
changes and block A is mined and blended with
blocks B, E, and F, as shown in the alternative
schedule, the mixture ABEF will have an average
copper grade of 0.67%, with copper recovery of
80.16%. The CDGH mixture average grade is
equal to ABEF; then, it would result in the same
copper recovery. Global copper recovery is then
80.16%, 0.3% higher than the first schedule. In
other words, in this case, the alternative schedule
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“feed volume approach -
traditional optimizing NPV

« » schedule” “feed volume approach -
block volume approach . ”
PP alternative schedule
(A) (B) © (D) (A) (B) ©€ (D) (A) (B) © (D)
Cu=04% | Cu=0.5% | Cu=0.4% | Cu=0.5% Cu=0.4% | Cu=0.5% | Cu=0.4% | Cu=0.5% Cu=04% | Cu=0.5% | Cu=0.4% | Cu=0.5%
(E) (F) ()] (H) (E) (F) G) (H) (E) (F) G) (H)
Cu=0.6% | Cu=12% | Cu=0.6% | Cu=1.2% Cu=0.6% | Cu=12% | Cu=0.6% | Cu=1.2% Cu=0.6% | Cu=12% | Cu=0.6% | Cu=1.2%
(A) (8) © (D) ABCD
Rey = Rey = Rey = Rew = Cu=0.45%
6667% | 7312% | 6667% | 73.12% Re, = 70.18% ABEF CDGH
Cu=0.67% Cu=0.67%
(E) (F) (G) (H) EFGH Re,= 80.16% R, = 80.16%
Ry = Roy = Rey = Reu= Cu=0.9%
77.66% 87.17% 77.66% 87.17% Re, = 84.71%
Global Cu =79.42% =79.86% =80.16%

recovery =

Figure 4. Difference between traditional ‘block volume approach’, ‘feed volume approach-traditional optimizing NPV schedule’
and ‘feed volume approach-alternative schedule’. Images are available in colour online.

maximizes global copper recovery, even though it
does not mine high-grade blocks before.
short-term planning, which seeks the best oper-
ational efficiency, this type of schedule is adequate.

In

Discussion of the demonstration example

We demonstrated that applying the regression model
to the larger volume support of the feed volume
(which is the theoretically correct approach) results
in a different global metal recovery estimation.
Additionally, the ‘best’ block scheduling may change
to another one.

The comparison between three situations is
shown in Figure 4. ‘Block volume approach’ is the
block-by-block method of estimating metallurgical
recovery. Although this method is currently
adopted in the mining industry, it is biased. If a
‘traditional optimizing NPV’ schedule (high-grade
blocks before) is performed, a ABCD- and EFGH-
mixture will occur, and the global metallurgical
recovery will be 79.86%, not the 79.42% previously

A B

g

frequency
s 8 8

g8 8

0

0087 0216 0345 0474 0603 0732 0861 0991

estimated. However, there is an alternative schedule
that is better in terms of global copper recovery.
The alternative programme increases even more
the global copper recovery to 80.16%, this being
an accurate prediction.

More studies on understanding the relationship
and sensibility between scheduling and recovery pre-
dicted for the feed volume and its impact on global
metal recovery and economic value are needed. In Sec-
tion 3, an example on a synthetic two-dimensional
database is performed.

Non-additivity and support impacts -
example application

Block model description

To better assess the impact of considering upscaled
mixtures of blocks in mine planning, consider a syn-
thetic two-dimensional copper block model adapted
from the Walker Lake dataset (Isaaks and Srivastava

All blocks - Cu(%) histogram

1120 1249 1378

Cu(%)

Figure 5. (A) Block model — Top view. (B) Copper histogram of the block model. Images are available in colour online.
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Figure 6. (A) Diglines of a synthetic copper deposit. (B) Digline1 copper histogram. (C) 40 blocks of the first digline with their
copper grades. (D) 40 blocks copper histogram. Images are available in colour online.

1989). The block model and its copper histogram are
shown in Figure 5.

Koppe et al. (2011) proposed a schedule where
seven diglines were generated (Figure 6(A)). For
this case study purposes, consider that the first dig-
line is being mined. This first digline comprises the
higher-grade blocks of the block model (Figure 6
(B)). For the short-term, 40 blocks of this digline
were deemed free to be mined (Figure 6(C)) and
must be extracted promptly, i.e. within a week.
Each of these blocks has its copper grade, ranging
from 0.57% to 1.38%, as seen in the histogram
(Figure 6(D)). As this is a two-dimensional
example, we could think of the blocks as being
on the same bench, in two different mining faces,
in an actual three-dimensional block model.

The impact of the support and the non-additivity of
the metallurgical recovery is checked in this example
for the following aspects: (i) differences in volume
between block support and feed volume support; (ii)
different regression models; (iii) considering two

Table 1. Scheduling scenarios with their feed volume/block
volume relation and global metallurgical recovery.

Scheduling Global

Feed volume/block

Scenario volume ratio Metallurgical Recovery

A (‘block volume 1 84.30%
approach’)

B 4 84.31%

C 8 84.32%

D 10 84.33%

E 20 84.41%

primary geological variables not linearly associated
with metallurgical recovery.

Differences in volume between the block and
the feed volume

Five scenarios are compared to assess how the differ-
ences between block and feed volume affect global
metallurgical recovery. The same previous regression
model between copper recovery and copper ROM
grade is used (Figure 1).

Scenario A is based on a feed volume/block volume
ratio of one; that is, it is based on the premise that each
mining block will be processed alone, one at a time.
Scheduling to maximize global metallurgical recovery
is performed, resulting in higher grade blocks being
mined first. The global metallurgical recovery is
84.30%.

Although scenario A is the traditional method of
considering a metallurgical recovery value in mine
planning, it is not recommended to apply the recovery
curve on each block, as illustrated in Figure 2, but on
their combination, which mimics the volume sent to
the processing plant. This volume depends on the
mining block’s dimensions and density, the through-
put rate, and the processing plant’s material residence
time. For example, a plant with a throughput rate of
3,500 t/h and a total residence time of 6 h would
mix 21,000 t of material. If each mining block has an
average of 3,000 t, it will combine seven blocks.

Scenarios B, C, D, and E assume that the material
fed to the plant is equivalent to the same volume of
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four, eight, ten, and twenty mining blocks, respect-
ively. The order in which each mining block is
mined and sent to processing on these scenarios
does not differ from that of scenario A (all share the
same schedule). However, their global metallurgical
recovery results change (Table 1).

For the next analysis, feed volume is assumed to be
equal to four blocks. Therefore, scenario B is the
theoretically correct approach. As Scenario A is the
traditional method of considering metallurgical recov-
ery in mine planning, it is used for comparison
purposes.

Differences in the behaviour of the recovery
regression model

The regression model between metallurgical recov-
ery and the primary geological variable may have
different behaviour, in some cases approximating a
linear function. A sensibility analysis of how this
regression model affects recovery proceeds. Four
regression models are applied. Model 0 (MO) is a
linear function. M1 is an order three polynomial.
M2 is the previously explained regression model
(Figure 1). M3 is a polynomial order six. They all
have the same minimum and maximum copper
recovery (Figure 7).

Considering the feed volume consists of four
blocks, we can think of the estimation based on feed
volume/block volume ratio of one (scenario A -
‘block volume approach’) as the biased estimation
and scenario B (‘feed volume approach’) as the accu-
rate estimation. The impact of each model is analysed
on the difference between the scenarios (Table 2).
Scheduling order of mining blocks is not changed
among them.

For each model, there is a specific error between the
biased and the accurate approach.

Regression model considering two primary
variables

Besides considering the difference between block-feed
volume and the different regression models, grade and
lithology are used to explain how the mixture of two
primary variables may also impact the global metallur-
gical recovery estimation.

For assessing the lithology impact on metal recov-
ery, consider the example of a real copper mine
(Wheaton Precious Metals 2019), where metallurgical
recovery varies as the mixture of lithologies in the
ROM feeding the plant changes. In lesser quantity in
the deposit, the oxidized ore has only 77% on average
of metal recovery. In greater quantity in the deposit,

Table 2. Recovery regression model equations, global metallurgical recovery for each scenario and their difference.

Global metallurgical recovery ~ Global metallurgical recovery

Global metallurgical

Model Regression equation estimation — Scenario A estimation — Scenario B recovery error (Sc.A — Sc.B)
MO - Linear y=41.358x+21.999 60.99% 60.96% +0.03%
M1 - Polynomial 3 y=24.281x> — 85.192x* + 119.65x + 72.88% 72.86% +0.02%
16.14
M2 - Reference y =88.5(1—EXP(—3.5x)) 84.30% 84.31% —0.01%
M3 - Polynomial 6 y=—211.77x® + 1182.5x° — 2615.7x* 84.29% 85.56% —1.27%

+2936.4x> — 1801.1x% + 616.78x —
19.683
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Lithology

Figure 8. Lithology map and lithology-grade boxplot. Images are available in colour online.

the fresh sulphide ore has 90% metal recovery on aver-
age. A combination of up to 30% oxidized to 70% sul-
phide could be tolerated by the plant with no relevant
impact. Above that proportion, the process loses
effectiveness.

Reproducing a similar situation, a lithology variable
is assigned to the blocks in our example study. Of the
40 blocks, 29 have lithology-1 type (fresh sulphide),
and 11 have a lithology-0 type (oxide). Grade and
lithology are not correlated (Figure 8).

The lithology and grade impact on metal recovery
is represented by the regression models shown in
Figure 9. Each curve is related to a different lithology
proportion: ‘Lithol (100%)’ refers to a mixture com-
posed only by lithology-1 blocks. In contrast,
‘Litho0’ refers to a combination consisting only of
lithology-0 blocks. ‘Lithol (75%)’ curve is very close
to the ‘Litho1(100%)” curve. Nevertheless, the greater
the proportion of lithology-0 blocks in the mixture,
the worse is the metal recovery.

For our forty-blocks case study, two situations are
compared (Table 3). Both use grade and lithology as
primary variables associated with the metal recovery
(Figure 9), but the first (A-GL) is based on the feed
volume/block volume ratio of one (Scenario A -
‘block volume approach’), while the second (B-GL)
is based on the feed volume/block volume ratio of
four (Scenario B - ‘feed volume approach’). We can
think of scenario A-GL as the biased estimation and
scenario B-GL as the accurate estimation.

Therefore, the joint impact of the aspects men-
tioned (feed volume/block volume ratio, regression
model, and grade and lithology variables) on the glo-
bal metallurgical recovery is assessed. Scheduling
order of mining blocks is not changed among them.

As with the example in Section 2, the biased ‘block
volume approach’ has a lower copper recovery value
than the accurate ‘feed volume approach’.

Novel scheduling considering mixtures.

The A-GL and B-GL scenarios considered the ‘tra-
ditional optimizing NPV’ schedule that mines the
high-grade blocks before.

However, an alternative schedule which considers
the ‘feed volume approach’ and how each block is
mixed provides an accurate and greater global metal-
lurgical recovery. This schedule, denominated novel
‘mixture’ scheduling, changes the order of mining
for nine blocks out of forty (Table 4).

The differences between these scenarios may be

better evaluated in economic value. Consider
Equation (2), where:
o Pcu = price of copper (US$/Ib)
o Qcu = quantity of recovered copper (Ib)
e C=all associated costs (US$/t)
e T=ore tonnage (t)
Economic Value (US$)
- Pcu'ch_C'T (2)

Consider the copper price as 3.18 US$/Ib, the sum of
mining and processing costs equals 10.0 US$/t of
ore. Each block has 3,000 t. The quantity of recov-
ered copper is different for each scenario. Table 4
summarizes all the results. A-GL scenario is the
biased ‘block volume’ traditional method of consid-
ering metallurgical recovery in mine planning. B-
GL scenario is the accurate ‘feed volume’ approach,
with a ‘traditional optimizing NPV’ schedule per-
formed. B-GL - Novel ‘mixture’ scheduling is the
accurate ‘feed volume’” approach with the best sche-
duling scenario.

In summary, A-GL is what mine planners predict.
B-GL is what happens. B-GL - Novel ‘mixture’ sche-
duling is the best possible option that could happen.
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Figure 9. Regression model for each different lithology proportion. Images are available in colour online.

Discussion

Non-additivity may impact metallurgical recovery
estimation in different ways, depending on the joint
impact of (i) the difference between feed volume and
block volume, (ii) the regression model behaviour,
and (iii) the primary variables associated with the met-
allurgical recovery estimation.

The feed volume/block volume ratio seems to have
little impact, if considered by itself. For a ratio of up to
twenty, the regression model can be applied on the
block level with a global metallurgical recovery differ-
ence of 0.11%. It should be noted, however, that the
blocks composing the feed volume are similar to
each other in respect to copper grade, because of the
‘traditional optimizing NPV’ scheduling performed.
This explains the little global metallurgical recovery
difference. The more different the blocks composing
the feed volume, the more inaccurate would be the
global metallurgical recovery estimation based on
block volume.

From the second analysis on, we fixed the feed
volume to four. All the analysis compares the tra-
ditional scenario based on the feed volume/block
volume ratio of one (‘block volume approach’),
which is biased, with the accurate scenario based on

the feed volume/block volume ratio of four (‘feed
volume approach’). The use of different regression
models indicates that for the linear and the order
three polynomial, there is a positive bias. For the refer-
ence model and the order six polynomial, there is a
negative bias. Global metallurgical recovery value is
sensitive to the regression model used. Adopting
inadequate regression model’s behaviour may lead to
excessive error in predicting the expected global
metal recovery. Therefore, geometallurgical tests to
assess the accurate relationship between recovery
and primary variables are needed.

The third analysis included the lithology attribute.
The A-GL scenario is the traditional ‘block volume
approach’ with a ‘traditional NPV optimization’ sche-
dule. This solution ignores how each block is blended
with others to compose the feed volume. The B-GL
scenario is based on the correct method of considering
the feed volume. Applying the same scheduling, the
difference between them is 1.17% in copper recovery.

Nevertheless, there is a better schedule than the
‘traditional NPV optimization’ programme in terms
of global metallurgical recovery. The novel ‘mixture’
scheduling recognizes the benefit of mixing lithologies
0 and 1 in the 25—-75% proportion. Consequently, this
schedule changed the order of nine blocks, and

Table 3. Scheduling scenarios and their global metallurgical recovery.

Scheduling global metallurgical

Scenario Description recovery
A-GL - ‘Block volume approach’ 81.67%
- Regression model: based on Cu grade. Only litho1(100%) or litho0(100%) curves are assumed (not
proportions).
- Schedule: high-grade blocks first
B-GL - ‘Feed volume approach’ 82.84%

- Regression model: based on Cu grade and lithology (proportions)

- Schedule: high-grade blocks first
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Table 4. Scheduling scenarios, their global metallurgical recovery and economic value.

Scheduling global Scheduling

Scenario Description metallurgical recovery economic value
A-GL - ‘Block volume approach’ 81.67% 65,233 USS

(Inaccurate) - Regression model: based on Cu grade. Only litho1(100%) or lithoO

(100%) curves are assumed (not proportions).
- Schedule: high-grade blocks first

B-GL - 'Feed volume approach’ 82.84% 83,284 USS

(Accurate, but not the - Regression model: based on Cu grade and lithology (proportions)

best schedule) - Schedule: high-grade blocks first
B-GL - Novel ‘mixture’ - 'Feed volume approach’ 83.31% 90,587 US$

scheduling - Regression model: based on Cu grade and lithology (proportions)
(Accurate and best - Schedule aim: maximize mixture global met. recovery
schedule)

provided a better result. Evaluating it in economic
values, this schedule resulted in 90,587 USS$, against
83,284 USS$ of the accurate but not best B-GL schedule,
and 65,233 US$ of the biased traditional method.

If non-additivity is ignored in the mixture of
blocks, the combination of high feed volume/block
volume ratio, non-linear regression model, and
many primary variables correlated to metallurgical
recovery can contribute to a very inaccurate esti-
mation of global metallurgical recovery and sub-opti-
mized scheduling.

All discussion here is based on the example results.
Different feed volume/block volume ratio, regression
model behaviour, and primary variables analysed
may provide smaller or more significant differences,
positive or negative bias. Each operation should evalu-
ate its own characteristics from this geometallurgical
perspective, as there is no universal rule.

Conclusions

Project success can be impacted by a poor understand-
ing of the characteristics of geometallurgical attri-
butes. In particular, the support and non-additivity
properties must be thoroughly thought out when con-
sidering geometallurgical variables in mine planning.

The support is related to the feed volume/block
volume ratio. Plant capacity and block dimensions
will determine how many blocks should be clustered
to form and assess the mixture feeding the plant.

The non-additivity property requires that the non-
linear behaviour be known. This can be accomplished
by sampling and analysing ROM variables (inputs)
and their metallurgical recovery results (outputs) to
obtain a representative regression model.

Depending on the combination of feed volume/
block volume ratio, regression model behaviour, and
primary variables correlated to metallurgical recovery,
the support and non-additivity may have, or not, a rel-
evant impact on global metallurgical recovery esti-
mation and, consequently, on the economic results.
An optimal ‘mixture’ scheduling is useful to have
both accuracy and optimality in global metallurgical
recovery results and economic value of the project.

In the application example mimicking a copper
mine, the traditional ‘block volume approach’ sche-
duling resulted in a global metallurgical recovery
1.64% lesser than the novel ‘mixture’ scheduling. As
the latter is the theoretically correct approach, there
is an inaccuracy of global metallurgical recovery and
economic value forecasted with the current practice.

Each operation should evaluate its own character-
istics to understand if the scheduling performed is
accurate in predicting global metallurgical recovery
and if it is the optimal one. If not, optimal scheduling
may be obtained with an iterative algorithm that con-
siders how to mix blocks in the feed volume, which is
currently being investigated.
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