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The present study focused on overcoming the primary problem faced by any quantitative mineralogical
study involving iron ore characterisation using a reflected light optical microscope; distinguishing the
quartz mineral from the epoxy resin in digital images taken from mounted polished sections.
Difficulties arise in this case because both phases reflect in the same colour intensity range. To overcome
this problem, a digital image analysis system denominated Opt-Lib was developed. In order to evaluate the
system responsivity, a characterisation study and modal and liberation analyses were performed using
typical Brazilian iron ore containing quartz and the main iron oxide/hydroxide minerals: magnetite,
hematite, and goethite. For the system performance evaluation, these results were compared with those
generated by the scanning electron microscopy (SEM)-based Mineral Liberation Analyzer for the same
sample. The results show that the main advantage of the Opt-Lib system over the SEM-based system is that
it facilitates differentiation, classification, and quantification of not only the quartz mineral, but also the
iron oxide/hydroxide minerals within the sample, thus providing a more precise qualitative response.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Consideration of mineral resource supply processes is the basis
of any mining project evaluation. The specifics of mineral resource
supply processes involve considerable risk; therefore, mineral
characterisation and liberation analyses are fundamental for defin-
ing appropriate ore resource models, mining methodologies, and
the most feasible processing routes. These are the fundamental
stages of the mineral resource supply process. The advancement
of digital technology has enabled the development of many appli-
cations that aim to minimize the risks involved in making such
assessments. Modern systems are being employed in many areas,
ranging from the scaling and planning of mineral deposits to the
design and operation of mineral processing plants. These systems
adopt multidisciplinary approaches, the main objective of which
is to minimize the uncertainties associated with resource eco-
nomic assessment. Such assessments are conducted in order to
classify given resources into economically feasible or unfeasible
prospects.

The success of these studies is strongly dependent on the
characterisation tools used. These tools, combined with analysis
of traditional attributes such as content and metallurgical recov-
ery, allow for a better understanding of the nature of a given min-
eral deposit. Properties related to descriptive and quantitative
mineralogy (modal analysis), mineral liberation, and mineral asso-
ciations influence not only processing methods, but also metallur-
gical recovery. Once the main ore properties that influence the
processing methods are characterised for a given deposit, they in
turn allow the major lithotypes that constitute the economic or
mineable reserves to be defined in the mine planning stage. All
these concepts and knowledge collectively are critical for opti-
mization of the mine-to-mil process and now constitute the field
of study known as geometallurgy (Dunham and Vann, 2007; Lin
et al., 2013).

The success of a geometallurgic study is completely based on
precise characterisation of ore properties. Traditionally, mineralog-
ical characterisation is performed using systems based on either a
reflected light optical microscope (RLOM) or a scanning electron
microscope (SEM). These studies require time and financial
resources. Further, if they are based on a very small data sample,
semi-quantitative results of dubious statistical precision are
obtained.

In recent years, more advanced techniques have been made
available. Powerful computers and RLOM- or SEM-based systems
have been integrated with digital image analysis systems. A signif-
icant number of ore characterisation analysis methods have been
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proposed. Automated particle size measurement (Shutherland,
2007) and automated particle size distribution analyses (King,
1984) have been proposed as a means of controlling ore liberation
and separation. It has also become evident that the analysis of min-
eral associations and precise studies of mineral liberation can only
be conducted using imaging techniques (King, 1984; Donskoi et al.,
2007). In the field of RLOM, a number of relevant contributions
have been made (Poliakov and Donskoi, 2014; Donskoi et al.,
2007, 2010, 2013a,b; Iglesias et al., 2011; Pirard et al., 2007;
Pirard, 2004). As regards SEM based systems, three systems merit
particular attention: QEMSCAN (Goodall et al., 2005), the Mineral
Liberation Analyzer (MLA) system first introduced in 1997 (Gu
and Napier-Munn, 1997), and more recently, the LibMin system
(Delbem, 2010). The MLA system (Fandrich et al., 2007) and
QEMSCAN combines images from a backscattered electron (BSE)
detector with a mapping analysis via energy dispersive X-ray
spectrometry (EDS). The LibMin system is similar to the MLA and
QEMSCAN, with the disadvantage that is does not facilitate sample
mapping via EDS.

Both RLOM- and SEM-based systems have certain advantages
and disadvantages, which become evident in iron ore characterisa-
tion studies, as can be seen in Fig. 1.

For SEM-based systems, compositional information is obtained
from the relationships between the number of produced BSE and
the mean atomic number (MAN) of the sampled minerals
(Chescoe and Goodhew, 1990). The BSE/MAN rate provides the
contrast level in the generated digital image, as shown in Fig. 1a.
EDS mapping can also provide compositional information. How-
ever, for iron ores, difficulties arise because of the similarities pre-
sented by hematite and magnetite as regards their mean atomic
numbers and chemical compositions. Characterisation studies per-
formed on iron ore sinter (Tonzetic and Dippenaar, 2011) using a
QEMSCAN system confirm this assumption. The iron-ore-sinter
characterisation results obtained in the above study exhibit large
fluctuations in the obtained magnetite component values. This is
thought to be the result of computer grey-scale drift, since there
is a very fine distinction between hematite and magnetite
grey-scale values. A similar result has also been reported
(Donskoi et al., 2013b) for iron ore characterisation performed
using the same SEM-based system. In other words, hematite and
magnetite cannot be compositionally identified and classified as
different mineral species using SEM-based systems. However, in
RLOM-based systems, the iron oxide/hydroxide minerals (hema-
tite, magnetite, and goethite) contrast and can be recognized as dif-
ferent mineral species, as depicted in Fig. 1b. Successful
RLOM-based studies have already been reported (Iglesias et al.,
2011; Donskoi et al., 2010). However, problems arise as regards
discrimination between different phases, such as between miner-
als (quartz) or epoxy resin with similar reflectivities. Both reflect
Fig. 1. Images sampled from the same area b
in the same range, restricting the application of RLOM to certain
mineral systems (Launeau et al., 1994; Neumann and Stanley,
2008). In the field of RLOM, distinction between non-opaque min-
erals and epoxy resin has been an issue for many years. Discrimi-
nation between quartz and epoxy resin continues to pose the
greatest difficulties.

As regards a geometallurgical approach, additional efforts must
be made to successfully overcome the continuing dilemma of
whether SEM- or RLOM-based systems should be used for iron
ore characterisation. Improvement of the existing systems has
become of paramount importance, along with the development
of more sophisticated analytical systems for iron-ore microstruc-
tural (textural) characterisation.

In order to achieve these objectives, a digital image analysis sys-
tem denominated Opt-Lib was developed in this study. The
approach used here focused on applying RLOM to iron ore miner-
alogical characterisation and liberation analysis. Since the
terminology generally used in the field of liberation tends to be
loose the following definitions will be used in the present paper:

degree of liberation: fraction of a phase (by volume for particles,
by area (areal) for sections, and by length for segments) present
in liberated particles (or sections or segments), (Barbery, 1992).
liberation spectrum: used to refer to the distribution of mineral
composition (by volume, area or length) in a particle population
(Schneider, 1995).

The Opt-Lib system analyses acquired digital images for a given
set of particle size classes, to allow the main iron ore mineral
phases: quartz, goethite, hematite, and magnetite to be identified
and classified. In this first stage, a developed sequence of tech-
niques that allows quartz to be distinguished from resin is also
applied. When the first stage is complete, the following sequence
of tasks is performed for each particle size class: areal composition
calculation; particle classification based on composition; evalua-
tion of the free particle content in the population; and, finally, eval-
uation of relative liberation spectra.

2. Methodology

2.1. Sample preparation and instrumentation

An iron ore sample (itabirite) from the Brazilian Iron Quadran-
gle, specifically, from the Mariana, Minas Gerais, region, was
selected for Opt-Lib testing. The sample was first characterised using
a Philips X-ray diffractometer (model PW1710) with a Cu Ka radi-
ation crystal (scanning speed: 0.06� 2h/s counting time, scanning
interval: 4–90� 2h). The mineral phases were identified by X-ray
diffraction using the ICDD (International Centre for Diffraction
y different systems: (a) SEM; (b) RLOM.
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Data) PDF-2, a collaborative product designed for inorganic mate-
rials analyses. For image acquisition, an adapted RLOM (Leitz/Leica,
model: Orthoplan Pol) with a digital camera (Canon PowerShot
S80) was used. The microscope was set to operate using polarised
reflected light and the digital camera was set to capture 24-bit RGB
images with a spatial resolution of 1600 � 1200 pixels.

The iron ore samples were classified by size, adopting
p

2 as the
progressive sieve ratio. The particles of each size class were then
mounted in polished sections. For the liberation analysis, size
classes of 300–212, 212–150, and 150–106 lm, were prepared in
a 25-mm-diameter epoxy resin mount. The preparation of the
epoxy resin mounts included the careful addition and homogenisa-
tion of a high-viscosity epoxy resin to the original base resin. The
objectives of this preparation process were:

� To reduce the mineral particle sedimentation rate. This enabled
the resin hardening process to finish before the particles were
completely deposited at the bottom of the mount. This proce-
dure reduces problems related to particle preferred orientation
and also neighbouring particles in close proximity to each other.
� To prevent particle pores from becoming filled with resin. This

contributes to the identification of these structures in digital
RLOM images.

The polishing process also followed the standard procedures
necessary to preserve particle structure, minimize particle/resin
topological problems, prevent particle detachment from the resin,
and ensure that the surfaces of each mineral phase on the polished
sections were completely uniform. The sample preparation
methodology which best describes the required in this study,
were:

� Samples mounting in epoxy resin: the mounting were assem-
bled using a 25 � 25 mm cylinder. For each particle class size
a mix prepared in a proportion, by weight, of 7:2:1:2 regarding
respectively to epoxy resin, catalyzer, high viscosity copolymer,
and mineral particles, were prepared. After assembling, the
mounting set were submitted to vacuum in a vacuum chamber
to remove any air bubble formed during the mixing step.
� Roughing and polishing: after hardening, the mounts were sub-

mitted to a first course roughing stage to take off the first par-
ticles layer. This process is important to reduce dense phases
preferential orientation. The roughing stage is followed by the
graining stage using a sequence of sandpaper mesh sizes: 240,
320, 400, 600 and 800. Later on the mounting sections were
submitted to a polishing stage using a sequence polishing dia-
mond pastes whose mesh sizes were respectively, 15 lm,
9 lm, 6 lm, 3 lm, 1 lm and 0.25 lm.

For roughing and polishing it was used a Buehler polishing sys-
tem model Minimet 1000 whose polishing parameters are pre-
sented in Table 1.

It is worth to point out that the polishing procedures are critical
to obtain good quality RLOM digital images. The accuracy of the
image analysis results will strongly rely on the sampling prepara-
tion procedures.
Table 1
Polishing parameters.

Polishing time (min) Speed (rpm) Force (N) Diamond paste (lm)

25 25 25 15
25 25 25 9
25 20 20 6
30 20 20 3
30 20 15 1
20 20 10 0.25
In order to validate the results obtained using the Opt-Lib system,
a comparative study was conducted using the same polished
sections. These samples were also submitted for analysis in a
MLA system, the MLA 650 (SEM-FEG-Quanta 650; FEI), which
was supplemented with an EDS (Quantax; Bruker).

2.2. Image acquisition and pre-processing

Before the digital image acquisition and after mounting of the
polished sections of each size class on the microscope stage, the
RLOM was fully adjusted and calibrated so that all of the sampled
digital images exhibited the same colour intensity characteristics
for all samples. This means that, for a specific phase, the colour
intensity range that characterised this phase was present in the
same histogram region for all sampled images. This procedure
allows an optimal system configuration for the processing of all
images of a given polished section to be defined. In order to illus-
trate this procedure, Fig. 2 shows two digital images and their
respective histograms, which were obtained for different areas of
the same polished section for the 150–106-lm size class.

It is also important to select for each particle size class, the cor-
rect magnifying lens that will keep the same approximate number
of particles in the sampled view area, not considering particles that
touch the image borders. In Fig. 2, the number of particles in the
viewing area was set to approximately 6. After digital image acqui-
sition, the obtained image sets were submitted to a pre-processing
stage consisting of: background correction, sharpening, delin-
eation, and smoothing. All these pre-processing techniques have
already been addressed in previous works (Delbem, 2014).
3. Results and discussion

The Opt-Lib system was developed to quantify mineral phases
(modal analysis) and to conduct liberation studies of phases of
interest (iron-bearing minerals) from gangue minerals (quartz).
This system is based on a routine that was developed to classify
and distinguish quartz from resin in digital images of polished sec-
tions obtained using a RLOM. The iron ore sample information used
in the present study and, also, the main techniques implemented in
the Opt-Lib system are described below.

3.1. Sample characterisation

The iron ore sample from the Brazilian Iron Quadrangle was
subjected to X-ray diffraction analysis. The results show that the
sample was primarily composed of quartz (aSiO2), goethite
(FeO�OH), hematite (Fe2O3), and magnetite (Fe2O3�FeO).

3.2. Automated mineral phase segmentation procedure – identification
of cluster dissimilarities

Difficulties in identifying and classifying a finite set of entities
(grey-scale intensities) into groups of similar objects (clusters or
mineral phases) are often encountered in many different research
fields. Here, the choice of grey-scale images for this process merits
explanation. Firstly, the availability of very sensitive digital cam-
eras allows RGB thresholding to be performed. Also, the continuous
increase in computer processing power has facilitated the develop-
ment of complex image-analysis routines for mineral discrimina-
tion based on sample reflectivity and texture. Thus, dynamic
thresholding is also possible (Donskoi et al., 2013a; Poliakov and
Donskoi, 2014). It is a fact that, for the majority of iron ore miner-
als, reflectivity differences there exist and can be observed on the
grey-scale level. Therefore, grey-scale images can also be consid-
ered when developing mineral discrimination techniques.



Fig. 2. Particle images and respective image histograms taken from different areas of the same polished section for the 150–106-lm size class.

Fig. 3. RLOM image taken from iron ore sample containing quartz (Qz), goethite (Gt), magnetite (Mt), and hematite (Ht).
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Thus, the developed system for mineral discrimination is based
on a one-channel histogram analysis of digital images. The his-
togram of a digital image with L total possible intensity levels in
the [0, L] range is defined as the discrete function

hðikÞ ¼ nk; ð1Þ

where ik is the kth intensity level in the [0, L] interval and nk is the
number of pixels in the image with ik. The L value is equal to 255 for
8-bit images.

The developed routine searches for the optimum partitioning of
a set of finite entities (intensities) into groups of ‘‘similar’’ objects,
referred to as clusters here. The methodology is an approximation
of the optimum partitioning via global optimization of a selection
of ‘‘cluster seed points’’ (Diday and Moreau, 1984), and adopts the
following parameters:

I = {IK|k = 0 . . .L}, the set of grey-level intensities to be
partitioned;
D = {dkl|k, l = 0 . . .L}, the set of dissimilarities, where dkl = d(Ik, Il)
between all pairs of grey-level intensities;
PM = (C1 . . .CM), the partition of I into M clusters;
pM defined as the set of all possible PM.

Using the above notation, the optimal partition set (OPS) prob-
lem can be verbally expressed as:



Fig. 4. (a) Graphical representation of the N �M mask recursively applied for boundary definition; (b) RLOM image with sub-clusters exhibiting defined borders, pores, and
cracks; (c) image (b) with pseudo-colours attributed to each of the clusters: borders, pores, and cracks (white), quartz/resin (red), goethite (blue), magnetite (green), and
hematite (magenta). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(OPS) Find a partition, PM 2 pM, that provides the most homoge-
nous (discriminative) classification of the set of grey-level
intensities, I, as expressed in terms of the dissimilarities, D.

Additional parameters are also defined:

D(Cj) = max dkl, (Ik, Il 2 Cj), the diameter of cluster Cj;
r(Ci, Cj) = min dkl, (Ik 2 Ci; Ij 2 Cj), the distinction between Ci and
Cj;
s(Cj) = min dkl, (Ik 2 Cj; Il R Cj), the split of cluster Cj.

The results obtained through application of the clustering algo-
rithm are presented in Fig. 3, in which four distinct regions are
defined in the histogram. The clustering procedures are induced
by the s(Cj) seed points (in green). From left to right, C2, C3, and
C4 represent, respectively, goethite, magnetite, and hematite; the
three ‘‘homogeneous’’ clusters on the grey-level scale.

The grey-scale region, represented by the leftmost cluster in the
histogram includes other important structures besides quartz and
epoxy resin, such as particle edges, pores, and cracks. Distinguish-
ing these structures from epoxy resin can be very difficult or even
impossible. The main concept of the developed method for dis-
criminating between such structures was, in fact, fully based on
observations obtained from analysis of the C1 cluster. The frequen-
cies of structures such as particle edges, pores, and cracks are rep-
resented by the lower intensity values on the histogram to the first
peak of the maximum frequency observed in the range of the C1

cluster. These structures can occasionally appear as an additional



Fig. 5. (a) RLOM digital image from an iron ore sample showing the mineral phases containing quartz (Qz), goethite (Gt), magnetite (Mt), and hematite (Ht); (b) image (a)
after the segmentation procedure described in Sections 3.2 and 3.3.

Fig. 6. Selected section of Fig. 5b showing quartz border discontinuities (arrows)
after the segmentation process.
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cluster (labelled C0) on the histogram; however, this rarely occurs.
In the additional cluster case, the extra cluster that represents
these structures is indicated by intensities beginning at the lowest
values and gradually increasing in value until an ‘‘inflection’’ point
is reached. From this inflection point, the intensity increases
rapidly, until the maximum frequency value on the histogram is
reached.

Here, the C1 cluster was found to contain distinct particle struc-
tures that can be partitioned. One sub-cluster is composed of
intensities ranging from the lower values to the ‘‘inflection’’ point,
and indicates particle structures such as borders, pores, and cracks.
The second sub-cluster ranges from the ‘‘inflection’’ point to the
higher limit of the C1 cluster and is the quartz/epoxy resin
sub-cluster. In order to identify the C1 ‘‘inflection’’ point, which is
the seed point (or threshold boundary) for the two-sub-cluster par-
tition, a specific procedure was adopted.
3.3. Sub-cluster dissimilarity identification procedures

According to the statements from Section 3.2, it is possible to
fully identify certain particle structures, such as borders, pores,
and cracks. It is also suggested that the dissimilarity approach
cannot be used to completely overcome clustering problems when
one particular intensity (epoxy or quartz) dominates the
very-high-frequency range of the histogram. This is the fundamen-
tal problem faced by many mineralogists when attempting to dis-
criminate between non-opaque minerals, such as quartz, and
epoxy. Even when the mineral borders separating quartz from
epoxy are reasonably well visible, as in Fig. 3a, those structures
cannot be segregated through thresholding. In order to overcome
this problem, the following procedure was adopted.

Let x be a finite set and H a set of all parts (called levels). H is a
hierarchy in x if:



Fig. 7. (a) Pre-processed digital image from RLOM; (b) segmented image (clustering and sub-clustering); (c) image after ‘‘UnsharpMask’’ filter application; (d) image (c) after
segmentation resulting in the enhancing of the borders, pores and cracks; (e) image produced by addition of images (b) and (d).
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(1) x 2 H {i.e., the highest level contains all the individuals};
(2) "w 2x:{x} 2 H (terminal points).

An indexed hierarchy is a couple (H, f) in which H is a hierarchy
and f is an application of H in R such that:

(1) " h, h0 2 H: d(h, h0) P 0 (positiveness);
(2) " f(h), f(h0): d(f(h), f(h0) P 0 (positiveness);
(3) " d(h, h0) = N: d(f(h), f(h0)) > M (terminal condition, seed point

definition).

An implementation of the procedures described above is graph-
ically presented in Fig. 4a. A N �M mask must be recursively
applied until the terminal condition is reached, where the seed
(threshold) point is defined. The value of N is given in units of
intensity, while the value of M is given in units of frequency. M
is evaluated at each positive displacement until the terminal con-
dition is reached. In this example, an intensity value N = 11 was
found as the seed point (in green). Fig. 4b presents a RLOM digital
image taken from an iron ore sample containing quartz (Qz),
goethite (Gt), magnetite (Mt), and hematite (Ht). The image his-
togram presents the seed point that defines the two additional
sub-clusters, with the leftmost cluster representing the borders,
pores, and cracks.
In Fig. 4b, pseudo-colours have been attributed to each distinct
cluster. It can be seen that the clustering and sub-clustering seg-
mentation routines described above have allowed very important
structures to be defined (particle edges, pores, and cracks, indi-
cated by white), along with the main minerals: goethite (blue),
magnetite (green), and hematite (magenta). However, it can be
clearly seen from these results that quartz and resin (in red) dis-
crimination remains an unsolved problem.

3.4. Quartz-epoxy resin classification

Clustering processes fail to identify, classify, and discriminate
between quartz grains and epoxy resin in RLOM digital images.
This is due to the similarities in the colour intensities exhibited
by both phases. Therefore, to overcome these problems, it was nec-
essary to develop very specific techniques in this study. These
techniques must be intensively applied in two stages. The first
stage constitutes the sample preparation methodology, incorporat-
ing careful mounting and polishing of the sample sections as
described in Section 2 (Delbem, 2014). The second stage consists
of the computational work necessary to enhance the particle bor-
ders, primarily emphasizing the borders around quartz. Fig. 5a is
a RLOM digital image taken from the iron ore sample (itabirite)
containing quartz (Qz), goethite (Gt), magnetite (Mt), and hematite



Fig. 8. (a) Image with quartz border reinforcement; (b) segmented input image (binarisation); (c) filling process applied to image (b); (d) image (c) following erosion–dilation
process; (e) images (a) + (c); (f) logic operation applied to images (d) and (e) to fill and enhance particle pores and cracks.
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(Ht). Fig. 5b shows the input image after application of the seg-
mentation procedures described in Sections 3.2 and 3.3.

In Fig. 5a, the quartz borders consist of a low intensity line
resulting from the association of two distinct effects: the first is
related to a slightly topological difference that is exhibited by
quartz in relation to resin; the second is associated with the
well-known Becke line effect (Wahlstrom, 1969), which is usually
observed in transmitted light optical microscopy (TLOM) images.
Nevertheless, this effect can also be observed less intensively in
RLOM images. The developed segmentation routine also utilises
the Becke line effect for the classification and identification of
quartz and for discrimination between quartz and resin. The devel-
oped procedure considers this lower intensity line to be the bound-
ary between the two materials and thereby discriminates between
the quartz and resin. To successfully distinguish quartz from epoxy
resin, the borders around the quartz must be continuous after seg-
mentation (sub-clusters processing). However, segmentation pro-
cesses alone cannot guarantee completely continuous quartz
borders. Fig. 6 shows a selected portion of image Fig. 5b, which
clearly demonstrates that discontinuity problems still exist at the
quartz borders.
In order to enhance the quartz borders, the ‘‘UnsharpMask’’ fil-
ter (Gonzalez and Woods, 2008) was selected and carefully config-
ured for application to this specific case. The filter allows the input
image, f(x, y), to be obtained from a blurred image, f́(x, y). In the
sequence, an unsharpened mask, gmask(x, y), is obtained, according
to the expression

gmaskðx; yÞ ¼ f ðx; yÞ � �f ðx; yÞ; ð2Þ

To obtain the enhanced image, g(x, y), a weighted proportion, k
(k P 1), of gmask(x, y) is added to f(x, y), such that

gðx; yÞ ¼ f ðx; yÞ þ k�gmaskðx; yÞ; ð3Þ

For border enhancement, the ‘‘UnsharpMask’’ filter must
be correctly configured. Adjustments of the blur filter and k must
allow dark pixels (pixel halos) to be produced around all
objects in g(x, y). This procedure is very important, because the
resultant image ensures the continuity of the quartz borders. The
quartz border enhancement process is sequentially presented in
Fig. 7.

Fig. 7e is the final result of the quartz border reinforcement pro-
cedures. From this point, the process to discriminate between the



Fig. 9. Opt-Lib and MLA mineral phase quantification for the size classes: 300–212,
212–150, and 150–106 lm.
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quartz and the resin can be conducted. This process is sequentially
presented in Fig. 8.

Beginning with the input image resulting from the border rein-
forcement process (Fig. 8a), an ‘‘auxiliary image’’ is obtained
(Fig. 8b). In this auxiliary image, all pixels representing quartz
and resin are set to white, while all other pixels are set to black.
In the next step, all particles in the auxiliary image (Fig. 8b) are
Table 2
Mineral phase quantification performed using the Opt-Lib and MLA for the size classes: 300

Particle size (lm) System No. of particles Quartz (area %)

[300–212] MLA 1180 36.1
OptLib 1250 35.9

[212–150] MLA 1100 30.3
OptLib 1150 29.2

[150–106] MLA 1180 36.8
OptLib 1250 34.7
subjected to an inner filling process (Fig. 8c), and the inner pixels
of all particles are set to black. To distinguish the resin from the
quartz, the primary image (Fig. 8a) must be added to the auxiliary
image (Fig. 8c), resulting in the image depicted in Fig. 8e. In the
sequence, the auxiliary image (Fig. 8c) is subjected to an erosion
and dilatation procedure, the results of which are shown in
Fig. 8d. This image is used as a ‘‘background’’ for the particles in
the image obtained through the addition process (Fig. 8e). The
complete and final processing data are shown in Fig. 8f.

Regarding these procedures, it can be observed that the particle
borders represented by the white pixels in Fig. 8a simply vanish
after the addition process (Fig. 8e). This is very convenient, because
particles that are in contact with each other are de-agglomerated
and preserved as distinct objects. After the addition process
(Fig. 8e), it can be seen that internal particle structures such as
cracks and pores are still preserved (in white). Here, many different
problems that impact the ore characterisation and liberation anal-
ysis process can arise. For instance, considering a crack along a sin-
gle particle, this single particle can be sectioned as two different
particles. Further, image processing operations such as erosion
and dilation can be applied in this specific case to assure particle
integrity. Usually, this technique is applied to binary images such
as the image shown in Fig. 8c. In this case, the erosion procedure
can be applied several times to the infilled ‘‘auxiliary image’’
(Fig. 8c) to guarantee object separation. Dilation must be also
applied to compensate for the erosion; however, the dilation tech-
nique has slightly less iterations than the erosion process. The ero-
sion–dilation procedures do not affect the particle structure, and
they are exclusively applied to ensure that particle pores and
cracks are preserved and can be distinguished from epoxy resin.

The resultant segmented image (Fig. 8f) can be subjected to the
typical post-processing routines: elimination of spurious artefacts
(very small particles or fragments that do not match the particle
size class under investigation) and elimination of particles that
touch the image borders. From this point, the techniques used
within the Opt-Lib system can be applied in order to classify and
quantify the mineral phases and, also, to evaluate the mineral lib-
eration spectrum.
3.5. Opt-Lib performance evaluation

To evaluate the Opt-Lib system performance, an iron ore sample
from the Brazilian Iron Quadrangle was selected. The polished sec-
tions were first subjected to Opt-Lib system analysis, followed by
MLA system analysis. The main objective of the present study
was to compare both results to evaluate the performance of the
Opt-Lib system. The MLA system was chosen for this comparative
evaluation because it is a very powerful and sophisticated system
that is dedicated to liberation analysis.
3.5.1. Iron ore mineral characterisation and quantification – modal
analysis

X-ray diffraction data indicated the presence of the following
minerals in the iron ore sample: quartz, goethite, hematite, and
–212, 212–150, and 150–106 lm.

Goethite (area %) Hematite (area %) Magnetite (area %)

44.9 19 0
43 14.2 6.9

47.5 22.2 0
46.4 15.9 8.6

38.8 24.4 0
41.6 17.2 6.5
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magnetite. Based on the X-ray analysis, a qualitative evaluation
indicated that quartz and goethite were present in higher concen-
trations than hematite and magnetite. Regarding the iron oxide
minerals hematite and magnetite, hematite was present in higher
concentration than magnetite. The Opt-Lib and MLA analytical data
for the mineral phase quantification (modal analyses) performed
on the same iron ore sample for the 300–212-lm, 212–150-lm,
and 150–106-lm size classes are presented in Fig. 9 and also in
Table 2.

The results of the mineral phase quantifications for the three
analysed size classes produced by both systems are very similar
and in accordance with the qualitative results obtained from the
X-ray analysis. The observed differences were expected and most
likely result from the built-in technological differences within each
system.

A real validation of these results based on X-ray diffraction
applying Rietveld Refinement Methodology (RRM) is under
development.

The total number of particles analysed by each system varied
from 1150 to 1250 in each class size. This provides a very good sta-
tistical confidence. For the quartz and goethite minerals, both sys-
tems exhibit similar results, which means that the Opt-Lib system
accomplished the expected task of distinguishing quartz from
epoxy resin. Regarding the quantification of the hematite and mag-
netite minerals, it is also evident that the MLA (contrary to the
Opt-Lib) was not capable of recognizing them as distinct mineral
phases; instead, they are both designated as hematite in Fig. 9
and Table 2. For all size classes, the summations of the values
obtained for magnetite and hematite using the Opt-Lib system are
very similar to the hematite values given by the MLA analysis.

3.5.2. Iron ore liberation analysis
The three size classes examined in the mineral phase quantifi-

cation study were also used in the liberation analysis involving
both digital image analysis systems. For each size class, the num-
ber of sampled images was sufficiently large to guarantee that a
minimum of 500 particles from each class was analysed by each
system.

In the liberation analysis, goethite, hematite, and magnetite
were grouped together and considered to be a single mineral
phase. These mineral phases were denominated ‘‘iron oxides’’,
and the liberation analysis of the iron oxides as a group was con-
ducted relative to quartz. Table 3 correlates particle surface distri-
bution by areal composition with the respective particle
distribution by composition classes. Thus, the same procedure
was adopted for classifying the particles surface area in classes of
areal composition for both systems MLA and Opt-Lib. So they can
be compared. The areal composition were distributes in 12 classes
where 0% represents pure gangue minerals and 100% represents
pure mineral particles. From 0% to 100% 10 intermediated classes
of areal composition were set.

Fig. 10 shows the distribution function of the cumulative parti-
cle percentage content classified according to composition. The
particle composition is distributed perceptually from 0 to 100 in
12 composition classes. The graphs in Fig. 10 show, for each size
class, the cumulative percentages of particles with composition
greater than a certain value (the class range). Note that these com-
putations consider only particles with compositions in iron oxide
greater than zero.

The results show that, for each size class, the percentage of lib-
erated iron oxide particles, as calculated by the MLA system, was
very close to that yielded by the Opt-Lib system. Considering, for
instance, the 300–212-lm size class, the percentage of liberated
iron oxide particles was approximately 22%, according to the
MLA system. This can be compared to the approximate value of
25% given by the Opt-Lib system. Considering another point on the



Fig. 10. Cumulative particle composition distribution obtained from MLA and Opt-Lib for the size classes: 300–212, 212–150, and 150–106 lm.
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same curve, for instance, the class representing particles with com-
position greater than 50% in iron oxide, both systems exhibit val-
ues close to 60%. The same trends are observed for the other size
classes analysed here, i.e., 212–150 and 150–106 lm.

From the results for the three examined size classes presented
in Table 3 and Fig. 10, it can be concluded that the liberation anal-
ysis performed using both the MLA and Opt-Lib systems yielded very
similar results. The slight differences can be attributed to factors
such as:

� the initial parameter configurations of each system;
� differences in the particle population analysed by one system

that may not necessarily have been identical to that analysed
by the other system;
� different segmentation techniques.

4. Conclusions

A digital image analysis system was developed to perform min-
eralogical characterisation and liberation analysis of iron ores,
based on the analysis of digital images obtained using a reflected
light optical microscope (RLOM). The system increased the analyt-
ical precision of the RLOM technique as regards the assessment of
mineral phases such as quartz, goethite, hematite, and magnetite.
The technique applied an intensive sampling preparation and pol-
ishing methodology to overcome a classical problem encountered
during the analysis of digital images taken from a RLOM: classifica-
tion of the quartz mineral as a different phase to the epoxy resin
and discrimination between them. Once the quartz/epoxy resin
problem was overcome and, considering the fact that RLOM also
allows discrimination between magnetite and hematite, it was
possible to perform a modal analysis of the iron ore samples. A per-
formance evaluation was conducted in which the Opt-Lib and Min-
eral Liberation Analyzer (MLA) systems were compared. Samples of
a Brazilian iron ore containing three particle size classes (300–212,
212–150, and 150–106 lm) were subjected to analysis using both
systems. The differences observed in the obtained results were not
significant and can be attributed to characteristic factors of each
system. The results obtained for the modal analyses are indicative
that the quartz/epoxy resin discrimination problem has been satis-
factorily solved for the RLOM system. Further, the Opt-Lib system
has an advantage in that it can classify hematite and magnetite
as different mineral phases. The Opt-Lib methodology can result in
a promising iron ore characterisation system if adapted to recog-
nize the different hematite characteristics such as the lamellar,
granular and recrystallized ones.
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