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Abstract In mine planning, geospatial estimates of variables such as comminution
indexes and metallurgical recovery are extremely important to locate blocks for which
the energy consumption at the plant is minimized and for which the recovery of miner-
als ismaximized. Unlike ore grades, these variables cannot bemodeledwith traditional
geostatistical methods, which rely on the availability of a large number of samples for
variogram estimation and on the additivity of variables for change of support, among
other issues. Past attempts to build geospatial models of geometallurgical variables
have failed to address some of these issues, and most importantly, did not consider
adequatemathematical models for uncertainty quantification. In this work, we propose
a newmethodology that combines Bayesian predictive models with Kriging in Hilbert
spaces to quantify the geospatial uncertainty of such variables in realistic industrial set-
tings. The results we obtained with data from a real deposit indicate that the proposed
approach may become an interesting alternative to geostatistical simulation.
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1 Introduction

In the mining industry, the exploitation of mineral resources is planned on the basis of
geospatial models of ore grades, and more recently, geometallurgical variables such
as comminution indexes [e.g., drop weight test (DWT), Bond work index (BWI)] and
metallurgical recovery. Laboratory experiments to estimate geometallurgical variables
are time-consuming compared to the chemical analysis that is performed meter by
meter along drill holes, and consequently, only a few (< 100) core samples of greater
support (e.g., 10 meters) are subject to comminution and flotation tests. Moreover,
the distributions of these variables cannot be Gaussian (e.g., bounded support). In
particular, it is well known that comminution indexes and metallurgical recovery are
not additive—the component-weighted average of two sample values is not a good
estimator of the corresponding value in the blend (Tavares and Kallemback 2013;
Carrasco et al. 2008)—and that this property hinders the use of linear geostatistical
models. Ignoring these issues can lead to bias in geospatial estimates and suboptimal
mine planning (Campos et al. 2021).

Although geostatistical methods such as Kriging and Gaussian simulation have
been extensively proposed for ore grades (Journel 2003), these same methods cannot
be directly applied to geometallurgical variables for various reasons, which include
a reduced number of samples for variogram estimation, non-additive variables, and
non-Gaussian distributions, among others. Past attempts to build geospatial models
of geometallurgical variables did not address these issues or considered modeling
assumptions that are not valid in industrial settings.

A common strategy to circumvent the modeling challenges in geometallurgy con-
sists of (1) applying nonlinear transformations to the data, (2) modeling the data as if
theywereGaussian, and (3) undoing the transformations (Boisvert et al. 2013;Deutsch
et al. 2015). In spite of its appeal, this strategy cannot handle physical constraints that
are crucial in downstream applications (e.g., material balance, positivity of hardness),
nor can it quantify uncertainty adequately. Consequently, models created with this
strategy usually require detailed human intervention and ad hoc modifications to work
in practice. They are not robust to small variations in the data, cannot be applied online,
and cannot be easily transferred across different types of deposits.

For specific deposits, it is sometimes possible to exploit relationships between
a set of auxiliary variables to design geospatial models of primary geometallurgical
variables. As an example, consider the metallurgical recovery of copper, defined as the
mass ratio of copper in the concentrate by copper in the feed in a flotation process. If the
numerator and denominator are linearly related, then it is possible to use co-Kriging
to estimate both (additive) variables simultaneously (assuming enough samples are
available for variogram estimation), and consequently estimate the ratio at eachmining
block (Adeli et al. 2021). Although clever, this model is not general enough for wider
use by the industry, which is usually concerned with nonlinear recoveries from locked
cycle tests.

Finally, and most importantly, the misspecification of Gaussian distributions for
geometallurgical (or transformed) variables may lead to poor uncertainty estimates.
Together with the reduced number of samples that is common in geometallurgical
modeling, this is extremely undesirable.
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In this work, we propose a new methodology that combines Bayesian predictive
models (Gelman 2014) with Kriging in Hilbert spaces (Hilbert–Kriging) (Menafoglio
et al. 2013) to quantify the geospatial uncertainty of geometallurgical variables.
Bayesian models allow for the incorporation of domain expertise in the form of prior
distributions and physical relations, which counterweights the reduced number of sam-
ples. Hilbert–Kriging enables the interpolation of non-Gaussian distributions from
drill holes to mining blocks. As a result, the proposed methodology provides quick
(≈ 6 min) probabilistic estimates of non-Gaussian variables across space without
compute-intensive geostatistical simulation.

Thepaper is organized as follows. InSect. 2,wedefineBayesianmodels for different
geometallurgical variables and explain how the output of these models is used in
Hilbert–Kriging. All the steps of the proposed methodology are illustrated using data
from a real copper deposit. In Sect. 3, we discuss the results and possible technical
challenges associated with the application of the methodology in practice. In Sect. 4,
we conclude the work and point to future research directions.

2 Methodology

2.1 Overview

The flowchart in Fig. 1 illustrates the steps of the proposed methodology, which
starts with three tables: comminution, flotation, and drillholes. The
comminution and flotation tables contain data for a reduced number of rock
samples—cylinders—that are subject to comminution and flotation tests. The con-
tent of these tables will be described in more detail in the following sections. The
drillholes table is the standard table in the mining industry that contains chemi-
cal analysis data for all rock samples along the drill holes with their respective X, Y,
and Z coordinates.

In the first step, the comminution and flotation tables are used to infer
the posterior distribution of geometallurgical variables according to a set of Bayesian
models. These models take chemical (or mineralogy) data as input and output full
probability distributions for the drop weight test (DWT), Bond work index (BWI),
and metallurgical recovery of copper in a locked cycle test (LCT). By assuming that
the samples in the drillholes table are composited to a length that is similar
to the length of the samples in the other two tables, the Bayesian models can be
directly applied to the rock samples in the drill holes. The result of this second step
consists of a new predictions table that contains probabilistic predictions for all
rock samples along the drill holes. In the final step, the probability distributions of
the DWT, BWI, and LCT are interpolated for all blocks with Hilbert–Kriging, which
accounts for the change of support. The final result is a block model where each block
has a full probability distribution for each geometallurgical variable. No geoestatistical
simulation is involved.

In Fig. 2, we illustrate the geospatial configuration of the samples from the real
copper deposit investigated in this work. The nature and number of comminution
and flotation samples invalidate the use of traditional geostatistical methods.
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Fig. 1 Flowchart of the proposed methodology

Fig. 2 Geospatial configuration of comminution, flotation, and drillholes samples in a real
copper deposit
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2.2 Bayesian Models

Hereafter, we assume that the reader is familiar with Bayesian statistics. The excellent
introductory book by Davidson-Pilon (2015) is freely available online for those who
are not familiar with basic concepts such as Bayes’ rule and prior distributions.

The following sections describe three specific Bayesianmodels for DWT, BWI, and
LCT, but other Bayesian models could have been adopted instead. Each model takes a
vector x ∈ R

p of explanatory variables as input and outputs probabilistic predictions
of the response geometallurgical variable. In this work, the explanatory variables are
chemical compositions, which are also available in the drillholes table. In order
to facilitate the specification of prior distributions and to reduce the effects of abundant
elements, the explanatory variables are transformed with a centered log-ratio (CLR)
(Aitchison 2003) followed by a normal quantile (Barnett and Deutsch 2012) (a.k.a.
normal score) transform.

2.2.1 Drop Weight Test

In this comminution test, a standard weight is dropped from three heights h1, h2, h3 on
n rock samples, and particle size distributions are recorded after each impact φ(i)

h j
, i =

1, 2, . . . , n, j = 1, 2, 3. For each height h j , there is a corresponding potential energy

Eh j , which is considered an input to the test. The value t
(i)
10 (h j ) = φ

(i)
h j

(l/10) is defined
as the fraction of particles with size smaller or equal to l/10, where l is the original
size of each and every sample (i.e., l(1) = l(2) = · · · = l(n) = l).

The standardized formula

t10(h) = A
(
1 − e−bEh

)
(1)

relates the potential energy to the fraction of fine material (Napier-Munn et al. 1999).
The parameters A > 0 and b > 0 are fitted for each sample with least squares, con-

sidering the three energy levels. Let Ji (A, b) = ∑3
j=1

(
t (i)10 (h j ) − A

(
1 − e−bEh j

))2

be the sum of squares for the i-th sample. It can be written in matrix form as

Ji (A, b) =
∥∥∥t(i) − A

(
1 − e−bE

)∥∥∥
2

2
, (2)

with E = (Eh1, Eh2 , Eh3) and t(i) = (t (i)10 (h1), t
(i)
10 (h2), t

(i)
10 (h3)). The energy levels,

which are also standardized in the industry, are shared across all samples. The optimal
solution is obtained via minimization,

A(i), b(i) = argmin
A,b>0

Ji (A, b). (3)

Finally, the dropweight test index is defined asDWT(i) = A(i)×b(i). It summarizes
the fragility of the sample in the following sense: the higher the index, the more fragile
the sample.
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Fig. 3 Prior distribution of t10(h1), t10(h2), t10(h3), and consequently of DWT. Data from the
comminution table illustrated with vertical lines

In Appendix A, we demonstrate that the DWT index cannot be a linear function of
any given set of explanatory variables. In particular, it cannot be modeled with linear
geostatistical models. Motivated by this fact, and aware of the variables involved in
the computation of the index, we propose the following Bayesian hierarchical model,

t10(h j ) = t10(h j−1) + �(h j ) (4)

�(h j ) ∼ LogitNormal(μ j , σ 2
j ) (5)

μ j = α j + 〈β j , x〉 (6)

α j ∼ Normal(δ j , σ 2
j ) (7)

β j ∼ Normal(0, τ 2j I). (8)

The model defines random variables for the fractions of fine material in terms
of increments �(h j ) = t10(h j ) − t10(h j−1). These increments are random vari-
ables themselves with a LogitNormal(μ j , σ

2
j ) distribution. The mean parameter

μ j = α j + 〈β j , x〉 of this distribution is assumed to be an affine combination of
explanatory variables with normally distributed coefficients β j and intercept α j . By
fixing the hyperparameters of the model δ j , σ j , τ j , we can sample the prior distri-
bution of fractions, and consequently, the prior distribution of DWT as illustrated in
Fig. 3.

The hyperparameters δ j locate the centers of the three density plots. They are
initialized with empirical averages from the comminution table,
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δ1 = 1

n

n∑
i=1

t (i)10 (h1) (9)

δ2 = 1

n

n∑
i=1

t (i)10 (h2) − t (i)10 (h1) (10)

δ3 = 1

n

n∑
i=1

t (i)10 (h3) − t (i)10 (h2) (11)

The hyperparameters σ j and τ j specify the prior uncertainty around these centers.
They are initialized with fixed large values to encompass all possible physical values.
All hyperparameters can be adjusted by the domain expert if he/she believes that the
default prior distribution for the deposit is different.

2.2.2 Bond Work Index

The Bond work index (BWI) in kWh/t is an index that quantifies the resistance of a
sample to grinding according to a test carried out in a laboratory mill. The laboratory
mill has an internal diameter of 305mm and length of 305mm. The mill has a smooth
lining withrounded corners and no lifters. The ball media charge has approximately
20.1kg distributed in different sizes starting with 38mm (Bond 1961). Ultimately, the
BWI is estimated using the formula

BWI = 49.0

A0.23M0.82
(

10.0√
P80

− 10.0√
F80

) , (12)

where F80 and P80 are the apertures in μm for which 80% of the material in the feed
and in the product passes through; M is the moability index in g/rev; and A is the
size of the screen used in μm. Equation 12 was derived by Bond decades ago. Even
though its exponents were calibrated around that time with a specific data set, the
formula is still widely used in the industry for a variety of mineral deposits, possibly
adopting correction factors for specific cases (Rowland 1975). In this work, we adopt
the formula as is, but emphasize the need for a full data-driven approach without preset
constants.

To improve the convergence of Bayesian inference in Sect. 2.3 and to facilitate
the specification of prior distributions, we normalize the variables as follows. Let
mF = 1

n

∑n
i=1 F80

(i) be the empirical average of F80 in the comminution table,
and let G = P80/F80 be the ratio of apertures. For a fixed screen size A, we propose
the following Bayesian hierarchical model,

F80

mF
∼ Normal(μF , σ 2

F ) (13)

G ∼ LogitNormal(μG , σ 2
G) (14)

P80

mF
= G

F80

mF
(15)

123



1234 Math Geosci (2022) 54:1227–1253

M ∼ Normal(μM , σ 2
M ) (16)

μF = αF + 〈βF , x〉 (17)

μG = αG + 〈βG, x〉 (18)

μM = αM + 〈βM , x〉 (19)

αF ∼ Normal(1, σ 2
F ) (20)

αG ∼ Normal(mG, σ 2
G) (21)

αM ∼ Normal(mM , σ 2
M ) (22)

βF ∼ Normal(0, τ 2F I) (23)

βG ∼ Normal(0, τ 2G I) (24)

βM ∼ Normal(0, τ 2M I). (25)

Due to the normalization by mF , the distribution of αF is centered at 1. The hyper-
parametersmG andmM locate the center of the other two density plots in Fig. 4. They
are initialized with empirical averages from the comminution table

mG = 1

n

n∑
i=1

P80(i)

F80(i)
(26)

mM = 1

n

n∑
i=1

M (i). (27)

Similar to the DWT model, the hyperparameters σF , σG , σM , and τF , τG , τM
specify the prior uncertainty around these centers. They are initialized with fixed
large values. By fixing the hyperparameters of the model, we can sample the prior
distribution of F80, G, P80, M , and consequently of BWI, using Eq. 12.

2.2.3 Locked Cycle Test

A locked cycle test (LCT) is a low-cost test to estimate the metallurgical recovery of
a given ore in an industrial-scale flotation circuit (Agar 2000). The LCT carried out
in this project considered an arrangement of cells that are known as “rougher” and
“cleaner” to separate the mass of copper sulfides from the gangue minerals that are
present in the rock sample, see Fig. 5.

In a first stage, a sample ofmassm is fed into the rougher cell with a known chemical
composition x = (xCu, x Au, . . . , x Fe). A fraction fr of this mass is recovered in the
rougher concentrate with an enriched grade of copper xCu

r ≥ xCu . In a second stage,
the mass in the rougher concentrate mr is fed into the cleaner cell (or a sequence of
such cells), and a new fraction fc is recovered with an even richer grade xCu

c ≥ xCu
r .

The metallurgical recovery of copper at the end of the second stage is defined as the
mass ratio of copper in the cleaner concentrate by copper in the feed
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Fig. 4 Prior distribution of F80, G, M , and consequently of BWI. Data from the comminution table
illustrated with vertical lines

Fig. 5 Schematic illustration of “rougher-cleaner” cells inside a locked cycle test. Data from flotation
table shown in blue

RCu
rc = mCu

c

mCu
=

(
mCu

c

mc

)(
mc

mr

)(mr

m

) ( m

mCu

)
= xCu

c fc fr
1

xCu
. (28)

Equation 28 is only valid for an open circuit. In reality, the metallurgical recovery
is the result of many cycles (e.g., 9) of flotation stages. Because the rougher stage is
more widely available, we define the intermediate recovery

RCu
r = xCu

r fr
1

xCu
(29)

and map it to the final recovery with an affine transformation α + βRCu
r . These

modeling steps lead to the following Bayesian hierarchical model

LCT ∼ LogitNormal(μ, σ 2) (30)

μ = α + βRCu
r (31)
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α ∼ Normal(a, σ 2) (32)

β ∼ Normal(0, τ 2) (33)

RCu
r = xCu

r fr
1

xCu
(34)

xCu ∼ LogitNormal(μx , σ
2
x ) (35)

fr ∼ LogitNormal(μ f , σ
2
f ) (36)

xCu
r ∼ LogitNormal(μr , σ

2
r ) (37)

μx = αx + 〈βx , x〉 (38)

μ f = α f + 〈β f , x〉 (39)

μr = αr + 〈βr , x〉 (40)

αx ∼ Normal(rx , σ
2
x ) (41)

α f ∼ Normal(r f , σ
2
f ) (42)

αr ∼ Normal(rr , σ
2
r ) (43)

βx ∼ Normal(0, τ 2x I) (44)

β f ∼ Normal(0, τ 2f I) (45)

βr ∼ Normal(0, τ 2r I). (46)

The hyperparameters rx , r f , rr , and a locate the center of the density plots in Fig. 6.
They are initialized with empirical averages from the flotation table

rx = 1

n

n∑
i=1

xCu (i)
(47)

r f = 1

n

n∑
i=1

fr
(i) (48)

rr = 1

n

n∑
i=1

xCu
r

(i)
(49)

a = 1

n

n∑
i=1

LCT(i). (50)

The hyperparameters σx , σ f , σr , σ , and τx , τ f , τr , τ specify the prior uncertainty
around these centers. They are initialized with fixed large values. By fixing the hyper-
parameters of the model, we can sample the prior distribution of xCu , fr , xCu

r , and
consequently of LCT as illustrated in Fig. 6.
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Fig. 6 Prior distribution of xCu , fr , xCu
r , and consequently of LCT. Data from the flotation table

illustrated with vertical lines

2.3 Inference and Predictions

Having specified the three Bayesian models in Sect. 2.2, we can now proceed with
Bayesian inference to obtain the posterior distribution of all the modeled variables
given the data from the comminution and flotation tables. This posterior dis-
tribution can then be used to make probabilistic predictions on unseen samples from
the drillholes table.

In this section, we describe the content of these three tables in more detail, and
illustrate predictions of DWT, BWI, and LCT for arbitrarily chosen samples to solidify
the concepts presented so far.

2.3.1 Input Tables

The comminution table contains data that are used to calibrate the DWT and BWI
models.We recall that theDWT index is the product of twoparameters that are obtained
via least squares and three fractions of fine material known as t10(h1), t10(h2), and
t10(h3). Similarly, the BWI is obtained with a standardized formula in terms of F80,
P80, M , and A (see Eq. 12). Therefore, the table must contain all seven of these
columns that are directly available from the corresponding laboratory experiments.
Besides these columns, the table must also contain the columns with explanatory
variables x.

The flotation table contains data that are used to calibrate the LCT model. We
recall that the final metallurgical recovery of copper in the LCT is obtained from the
intermediate recovery in the rougher stage, which is in turn obtained from the grade of
copper andmass fraction in the rougher concentrate, xCu

r and fr , and from the grade of
copper in the feed xCu . Therefore, the table must contain these three variables. Unlike
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Fig. 7 Prior and posterior distributions of DWT, BWI, and LCT illustrating the relocation of probability
to regions where there are a greater number of samples

the other two models, this model also requires a column with the target LCT variable.
Besides these four columns, the table must also contain the columns with explanatory
variables x.

Finally, the drillholes table contains the X, Y, and Z columns with the coordi-
nates of samples along the drill holes and the columns with explanatory variables x.
See the data availability section for more details.

2.3.2 Bayesian Inference

Given themodels in Sect. 2.2 and the data from the comminution and flotation
tables, we can proceed and perform Bayesian inference with an extension of Hamilto-
nian Monte Carlo known as the No-U-Turn Sampler (NUTS) (Hoffman and Gelman
2014). The result is a collection of samples from the joint posterior distribution of
all variables in the proposed models. In Fig. 7, we illustrate the prior and posterior
distributions of DWT, BWI, and LCT. As expected, probabilities are relocated from
regions where there are few or no samples to regions where there are a greater number
of samples.

We can also visualize the joint posterior distribution of any subset of latent variables,
and check that all samples lie inside high-density regions. This is illustrated in Fig. 8
for variables t10(h1), t10(h2), and t10(h3).

Most importantly, it is during Bayesian inference that we learn the joint posterior
distribution of coefficients for all explanatory variables. This distribution is used to
make predictions on unseen samples, as explained next.
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Fig. 8 Joint posterior distribution of t10(h1), t10(h2), and t10(h3). Samples (white dots) in high-density
regions (red areas)

2.3.3 Predictions on Drill Holes

For any rock sample with a volume (i.e., support) similar to the volume of the sam-
ples in the comminution and flotation tables, we can use the joint posterior
distribution of coefficients to make probabilistic predictions of all other variables in
the Bayesian models. We simply evaluate the models forward using the explanatory
variables x (e.g., chemical analysis, mineralogy data) of the rock sample and thou-
sands of likely values of coefficients obtained with Bayesian inference. In particular,
this procedure generates thousands of likely values of DWT, BWI, and LCT for the
rock sample of interest, as illustrated in Fig. 9.

We observe that the posterior mean is not a good estimator of these three geometal-
lurgical variables due to the asymmetry of their distributions, and that a naive approach
with Gaussian distributions would have failed to capture this property. We also notice
how the specification of the prior distribution is crucial to constrain the values of the
variables to physical ranges. Even with a reduced number of samples (≈ 50), we can
still obtain useful uncertainty intervals for DWT, BWI, and LCT.

In order to avoid storing thousands of likely values of DWT, BWI, and LCT for each
rock sample in the drillholes table, we integrate the probability density functions
(PDFs) in Fig. 9 into probability mass functions (PMFs) in Fig. 10. This integration
consists of counting how many values lie on predefined bins (i.e., histogram). In the
case of DWT, we use bins from an industry standard (Chieregati and Delboni Jr 2001):
ETA (0,10), EXA (10,20), MTA (20,30), ALT (30,40), MDA (40,50), MED (50,60),
MDB (60,70), BAI (70,90), MTB (90,110), ETB (110,120).

The predicted PMFs of DWT, BWI, and LCT for all rock samples in the
drillholes table are stored in a new predictions table along with the X,
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Fig. 9 Probabilistic predictions of DWT, BWI, and LCT for arbitrarily chosen samples from the
comminution and flotation tables. Values observed in the tables liewithin the density plots. Posterior
mean is not a good estimator of observed values

Fig. 10 Corresponding probability mass functions for arbitrarily chosen samples in Fig. 9

Y, and Z coordinates of the samples. This table is the input to the next step of the
methodology.

2.4 Hilbert–Kriging

Here we propose the use of Hilbert–Kriging (Menafoglio et al. 2013) for direct inter-
polation of PDFs (or PMFs) at mining blocks given the predictions table. We
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briefly review themain concepts behind the framework and explain how an appropriate
choice of a Hilbert space can address the issue of non-additivity with geometallurgical
variables.

2.4.1 Main Concepts

Consider a collection of k georeferenced objects (e.g., numbers, functions) in a Hilbert
space (i.e., vector space with well-defined inner product) H,

z(s1), z(s2), . . . , z(sk) ∈ H. (51)

where s1, s2, . . . , sk ∈ D ⊂ R
3 are the locations of the objects. For example,

consider vectors with d components (i.e., H = R
d ) and the usual inner product

〈x, y〉 = ∑d
i=1 xi yi , or square-integrable functions (i.e., H = L2) with the inner

product 〈 f, g〉 = ∫
f (t)g(t)dt (Giraldo et al. 2010). The goal of the Hilbert–Kriging

framework is to define an estimator of the object z(s) at a new location s ∈ D as a
weighted combination of the available objects

ẑ(s) = λ1 · z(s1) + λ2 · z(s2) + · · · + λk · z(sk) (52)

The estimator in Eq. 52 is defined in terms of the scalar multiplication (·) and the
vector addition (+) inH. Since the choice of the inner product (〈, 〉) induces a norm,
a distance, and consequently a notion of variance in H, the universal Kriging system
of equations for optimal weights can be generalized to Hilbert spaces via constrained
minimization of estimation variance

minimize
λ1,λ2,...,λk

Var
(
ẑ(s) − z(s)

)
(53)

subject to E
[
ẑ(s)

] = m(s) (54)

where m(s) = ∑L
l=0 al fl(s) is the drift, fl are prespecified monomials in s, and al

are coefficient objects in the Hilbert space.
In practice, the generalization of a modern Kriging implementation to a Hilbert–

Kriging implementation consists of two main modifications. First, the coefficient
objects must be estimated with an implementation of generalized least squares that
supports objects in Hilbert spaces

â = (F
�−1F)−1F
�−1z, (55)

where z = (z(s1), z(s2), . . . , z(sk)) ∈ Hk is the vector with all available objects,
� is the covariance matrix between all objects, F is the monomial matrix for all
locations s1, s2, . . . , sk , and â = (â0, â1, . . . , âL) ∈ HL+1 is the vector of estimated
coefficients objects (see Sect. 2.4 of the Hilbert–Kriging paper).
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Second, the empirical variogram (assuming an intrinsic stationary model) must be
estimated in terms of the induced norm (‖·‖) inH

γ̂ (h) = 1

2 |N (h)|
∑

(i, j)∈N (h)

∥∥z(si ) − z(s j )
∥∥2 , (56)

where N (h) = {
(i, j) : si − s j ≈ h

}
is the usual set of pairs of locations aligned with

the lag vector h ∈ R
3.

Very informally, we say that the choice of scalar multiplication and vector addi-
tion determines the geometry of weighted combinations (Eq. 55), and that the choice
of inner product determines the structure of geospatial dependence in (Eq. 56)
(Menafoglio and Petris 2016). Given that the objects of interest in this work are
PDFs (or PMFs) predicted with Bayesian models at drill hole samples, we propose
the use of a specific Hilbert space known as the Aitchison space for Hilbert–Kriging
interpolation (Menafoglio et al. 2014).

2.4.2 Aitchison Space

In 1986, the statistician J. Aitchison introduced the branch of statistics known today
as compositional data analysis to cope with nonlinear constraints on the entries of
vector variables (Aitchison 2003). He developed a vector space A where vectors
p = (p1, p2, . . . , pm) of real entries satisfy

p1, p2, . . . , pm ≥ 0 (57)
m∑
i=1

pi = P. (58)

The first constraint, known as the non-negativity constraint, reflects the fact that
sometimes entries in a vector only contain relative information (a.k.a. proportions).
The second constraint, known as the fixed-sum constraint, exists to guarantee that the
initial amount of quantity P is preserved after vector operations. The specific value P
is not relevant and is often replaced by P = 1 after careful re-normalization.

We note that PMFs satisfy both constraints, and therefore we can leverage the
operations of the space A to interpolate these objects without ever producing invalid
probability distributions. The scalar multiplication and vector addition are defined as

λ · p = C(pλ
1 , p

λ
2 , . . . , p

λ
m) (59)

p + q = C(p1q1, p2q2, . . . , pmqm), (60)

with λ ∈ R a scalar, p, q ∈ A, PMFs with m bins, and C( p) = p∑m
i=1 pi

the closure

(or re-normalization) operation. As already discussed in the previous section, these
operations determine the geometry of weighted combinations. In Fig. 11, we illustrate
how two PMFs morph into one another according to these definitions.
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Fig. 11 Scalar multiplication and vector addition in Aitchison space determine how PMFs p, q ∈ A
(top-left and bottom-right plots) morph into one another as we vary λ ∈ R in the weighted combination
(1 − λ) p + λq

The inner product defined as

〈 p, q〉 =
∑
i< j

log
pi
p j

log
qi
q j

(61)

considers ratios (relative information) of entries as opposed to absolute values. It
induces a norm ‖ p‖ = √〈 p, p〉 and a distance d( p, q) = ‖ p − q‖ that can be
written as

d( p, q) =
√√√√∑

i< j

(
log

pi
p j

− log
qi
q j

)2

. (62)

The distance in Eq. 62 determines the structure of geospatial dependence. It is
used for empirical variogram estimation in Eq. 56. In Fig. 12, we illustrate how this
distance increases as we relocate probability mass across different bins in Fig. 11. It
is important to note that these definitions require PMFs with nonzero entries. This is
a well-known limitation of the Aitchison space that we overcome with the addition of
a very small value to all bins (a.k.a. Laplace smoothing).

Finally, we emphasize that Hilbert–Kriging of PMFs in the Aitchison space enjoys
all the features of traditionalKriging, including change of support. In addition,Hilbert–
Kriging of PMFs is less prone to non-additivity issues. The scalar multiplication and
vector addition in the Aitchison space assure that the asymmetries of the PMFs are
preserved and that linear combinations of PMFs are good estimators of the resulting
shape of the distribution.
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Fig. 12 The inner product in Aitchison space determines distances between PMFsas probability mass is
relocated across different bins in Fig. 11

2.4.3 Variography

Before we can performHilbert–Kriging of PMFs, we first need tomodel the variogram
of these objects. Our goal in this section is to illustrate the shape of such variograms
for DWT, BWI, and LCT. Since our intuition for geospatial dependence of PMFs is
limited, we do not attempt to interpret these shapes as we usually do with variograms
of scalar variables (e.g., ore grades).

Figure 13 illustrates the empirical variograms of the three residual PMFs along
the downhole direction after subtracting a drift PMF of zero degree (a.k.a. ordinary
Hilbert–Kriging). Because the distance in Eq. 62 is very sensitive to relocation of
probability mass (see Fig. 12), these variograms show a high nugget effect. In the
same visualization, we plot the corresponding theoretical models fitted with weighted
least squares using weights that are proportional to the bin counts.

From the fitted theoretical models in Fig. 13, we observe that the PMFs of DWT and
BWI display a visible correlation length (a.k.a. range) for the support of the samples in
the predictions table (10m), whereas the PMF of LCT does not. For simplicity,
and because we do not have enough evidence to support an anisotropic theoretical
model, we assume that actual variograms of PMFs are not a function of direction, and
use these theoretical models fitted along the downhole direction as our omnidirectional
models in Hilbert–Kriging.

2.4.4 Geostatistical Estimation

Having modeled the variograms of the three residual PMFs, we can proceed and
perform Hilbert–Kriging to estimate the PMFs at all mining blocks of size 30m ×
30m×15m. The change of support is performed as usual by integration of the specified
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Fig. 13 Empirical variograms of residual PMFs of DWT, BWI, and LCT along the drill hole direction
(orange). Theoretical models (green) fitted with weighted least squares using weights that are proportional
to the bin counts (gray)

Fig. 14 Geospatial uncertainty of DWT measured by entropy of estimated PMFs

variogram within each block. Let p = (p1, p2, . . . , pm) be an estimated PMF at a
given block. We adopt the mode η( p) = argmaxi pi as our final estimate of the
corresponding (block support) geometallurgical variable and the entropy H( p) =
−∑

i pi log pi as our measure of uncertainty.
First, we consider the entropymaps of DWT, BWI, and LCT in Figs. 14, 15, and 16.

We note that these maps cannot be easily obtained from the geospatial configuration
of samples alone in Fig. 2. Unlike the Kriging variance, which is only a function of the
geospatial configuration and specified variogram, these maps also encode nonlinear
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Fig. 15 Geospatial uncertainty of BWI measured by entropy of estimated PMFs

Table 1 Wall times of different steps of the methodology

Inference (s) Prediction (s) Hilbert–Kriging (s) Total time (min)

DWT 344 177 3 8.7

BWI 83 177 3 4.3

LCT 67 253 3 5.3

Inference performed with ≈ 60 samples from the comminution and flotation tables, prediction
performed with 2000 samples from the drillholes table, and Hilbert–Kriging performed with ≈ 3500
blocks. Wall time per geometallurgical variable is ≈ 6 min

relations built into the Bayesian models of Sect. 2.2. In particular, the entropy maps
of the two comminution variables—DWT and BWI—are similar, indicating that they
may indeed reflect uncertainty about the mechanical competence of the mining block
to be extracted.

After considering the geospatial uncertainty, we proceed and look at the mode
maps of the three geometallurgical variables. In this specific deposit, the mode maps
of DWT and LCT are uninteresting because most predictions of these two variables lie
in the same bin interval during the integration of PDFs into PMFs in Sect. 2.3.3. These
homogeneous maps are not an issue, since they are just a consequence of the binning
choices adopted by the industry. The mode map of BWI is the only heterogeneous
map for the specified number of bins. It is shown in Fig. 17.

The block model with estimated PMFs is the final result of the proposed methodol-
ogy. In Table1, we summarize the wall time of each major step in our implementation
of the methodology, which was executed with eight parallel threads in an Intel® Xeon®

Platinum 8354H CPU @ 3.10GHz CPU.
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Fig. 16 Geospatial uncertainty of LCT measured by entropy of estimated PMFs

Fig. 17 Most likely interval of BWI measured by mode of estimated PMFs

3 Discussion

As with any other academic work, there are technical challenges that need to be
discussed before any serious adoption of the technology by the industry.

In previous sections, we highlighted the major strengths of the proposed method-
ology, which are:

1. Robust predictions of (non-Gaussian) geometallurgical variables based on domain
expertise (e.g., nonlinear relations, prior distributions).
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2. Probabilistic predictions from which one can easily obtain uncertainty estimates
(e.g., entropy) to assess risk and make strategic decisions.

3. Online predictions that are updated during the development of the mine as soon
as new data become available.

We also emphasized that it can generate quick, geospatial, probabilistic estimates of
geometallurgical variables without compute-intensive geostatistical simulation (e.g.,
Gaussian simulation).

In this section, we would like to highlight the weaknesses of the adopted mathemat-
ical models and discuss important implementation details that are necessary to make
the solution work well in practice. We organize the discussion as a series of issues
below.

3.1 Choice of Explanatory Variables

Bayesian models are generally very good at constraining their predictions to accept-
able ranges even when the explanatory variables x are not well selected. In this work,
we did experiments with transformed chemical compositions (see Sect. 2.2) as our
explanatory variables given their widespread availability. However, after a series of
experiments with subcompositions, we concluded that these variables may not nec-
essarily be the best predictors of DWT, BWI, or LCT. For instance, we noticed that
Bayesian metrics such as the Kullback–Leibler score did not vary much with the
addition of new chemical elements to the list of variables. Similar experiments with
mineralogical compositions led to the same conclusions.

We believe that the predictive performance of the proposed Bayesian models can be
considerably improved with a more thoughtful selection of explanatory variables. In
particular, we believe that the resistance of a rock sample to grinding is associated with
textural features more than it is associated with chemical or mineralogical composi-
tions. Additionally, extrinsic factors such as operating speeds, circulating volumes,
etc. could be taken into account for the prediction of both comminution and flotation
variables.

3.2 Covariate Shift

Although the specification of prior distributions gives domain experts control of the
likely ranges of all latent variables in Bayesian models, covariate shift of the explana-
tory variables may still be an issue (Hoffimann et al. 2021). In particular, when the
comminution and flotation tables are too localized in the deposit, it is wise to
consider transfer learning methods before making predictions with the drillholes
table (Pan and Yang 2010; Weiss et al. 2016).

3.3 Compositing Restrictions

The proposed methodology assumes that the samples in the drillholes table
are composited to lengths that are comparable to the lengths of samples in the
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comminution and flotation tables. If for some reason the comminution and
flotation tests are performed with samples of radically varying lengths, it may not be
easy to leverage all the data in Bayesian inference.

In practice, laboratory tests are standardized and performed with samples of similar
support. Hence, we understand that it is always possible to composite chemical or
mineralogical compositions in drill holes to standardized supports in geometallurgy.

3.4 Oversimplification of Physics

To quickly test the methodology with real data from a copper deposit, we opted for
oversimplified models of BWI and LCT. The physical processes that are involved
in these two tests require dynamical modeling, which was out of the scope of this
particular project.

In the case of the BWI, we adopted the Bond formula in Eq. 12, which relies on
a series of empirical observations and constants derived decades ago using a specific
data set. If the actual deposit shows different behavior, then this behavior can only be
incorporated in the model via manual modification of the constants.

Regarding the LCT model, we replaced important aspects of the flotation process
by a simple affine map from the rougher stage to the final metallurgical recovery in
the locked cycle test. This oversimplification certainly compromises the predictive
performance of the model, and requires the measurement of the target LCT variable
in the flotation table.

3.5 Variable Scaling

Bayesian inference algorithms are sensitive to variable ranges. It is important to scale
all variables in a Bayesian model or introduce auxiliary variables to improve the
convergence of the associated Markov chains. Fortunately, it is usually possible to
scale a variable by a nonzero mean value, or shrink the variable with a nonlinear
transformation in the design of new models.

As an example, we introduced the variable G = P80/F80 ∈ [0, 1] in the BWI
model to improve the convergence of the NUTS algorithm with default hyperparame-
ters. Our attempts to work directly with F80 and P80 values inμm led to low effective
sample size and poor mixing of chains.

3.6 Binning Choices

In Sect. 2.3.3, bin intervals were chosen to convert posterior samples into probability
mass functions (PMFs). In the case of DWT, these intervals were chosen from an
industry standard, whereas in the case of BWI and LCT, the number of bins was
chosen to reflect a given level of detail.

It is clear that the choice of bins affects the predicted PMFs. The number of bins
must be large enough to effectively approximate the underlying probability density
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functions (PDFs) and small enough to make Hilbert–Kriging feasible in conventional
computers.

3.7 Laplace Smoothing

The definition of inner product in Eq. 61 assumes nonzero entries in the PMFs, and
this is a well-known issue of the Aitchison space. In order to perform variography
and Hilbert–Kriging, one must re-normalize the result with the addition of a small
threshold value to all entries. The addition of this threshold value can be formulated
as Laplace smoothing, which in turn can be interpreted as a form of prior knowledge.
Nevertheless, the threshold value is ad hoc, and care must be taken to preserve the
original shape of the PMF as much as possible.

3.8 Variogram Interpretation

Unlike variograms of scalar regionalized variables, the variograms used in thismethod-
ology are variograms of PMF objects. In this case, the notion of variance relies on the
(Fréchet) distance induced by the inner product between PMFs, and consequently it
becomes more difficult to associate ranges and sills in Fig. 12 with physical equiva-
lents.

4 Conclusions

In this paper,we addressed the problemof geostatistical interpolation of geometallurgi-
cal variableswith a novel combination ofBayesianmodeling andHilbert–Kriging. The
proposed methodology produces quick (≈ 6 min), geospatial, probabilistic estimates
of non-Gaussian variables without ad hoc transformations and compute-intensive geo-
statistical simulation.

We applied the methodology to a real copper deposit to illustrate that it can work
in practice at industrial scale. By considering three geometallurgical variables from
comminution and flotation tests, we showed that the proposed approach honors the
shape of the posterior (non-Gaussian) distribution at each mining block, including
their characteristic asymmetry. Additionally, all these probabilistic predictions pre-
sented satisfactory geospatial continuity according to simple visualizations of mode
and entropy maps.

One of the main practical challenges encountered during the application of the
methodology was the interpretation of variograms of probability mass functions. In
this work, we assumed that the empirical variograms along the downhole direction
were a good approximation of an omnidirectional model. Further experiments with
different data sets are needed to assess the extent to which this assumption is valid,
and to gain more intuition about this notion of geospatial continuity.

Finally, we believe that this work proves the concept that more sophisticated math-
ematical models are well suited to address major challenges in geometallurgical
modeling. Future work could consider new Bayesian models inspired by physics,
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new data sets from different types of deposits, and more quantitative assessments
designed in partnership with the industry.
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Appendix A DWT Is Not Linear

Given the objective function Ji (A, b) = ∥∥t(i) − A
(
1 − e−bE

)∥∥2
2, we show that the

optimal parameters A(i), b(i) = argminA,b>0 Ji (A, b) cannot be both linear functions
of a common set of explanatory variables x.

First, we note that the derivatives must vanish at the optimal solution

d

d A
Ji = −2

(
t(i) − A

(
1 − e−bE

))
 (
1 − e−bE

)
= 0 (63)

d

db
Ji = −2A

(
t(i) − A

(
1 − e−bE

))
 (
E ◦ e−bE

)
= 0 (64)

where ◦ is the Hadamard (or entry-wise) product. From the first equation, we obtain
the following expression for A(i) in terms of b(i)

A(i) = 〈t(i), 1 − e−b(i)E〉
||1 − e−b(i)E ||22

. (65)
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From the second equation, we obtain the following implicit relation for b(i) after
substituting the expression obtained above for A(i),

〈
t(i) − 〈t(i), 1 − e−b(i)E〉

||1 − e−b(i)E ||22
(1 − e−b(i)E), E ◦ e−b(i)E

〉
= 0. (66)

Denoting by

proj(
1−e−b(i)E

) t(i) = 〈t(i), 1 − e−b(i)E〉
||1 − e−b(i)E ||22

(1 − e−b(i)E), (67)

we can rewrite the implicit relation as

〈
t(i) − proj(

1−e−b(i)E
) t(i), E ◦ e−b(i)E

〉
= 0. (68)

We now know that the pair (A(i), b(i)) of optimal parameters must satisfy Eqs. 65
and 68. It is clear that if b(i) is a linear function of x, then A(i) cannot be a linear
function of x, and vice versa. For similar reason, the product DWT(i) = A(i) × b(i)

cannot be a linear function of x.

References

Adeli A, Dowd P, Emery X, Xu C (2021) Using cokriging to predict metal recovery accounting for non-
additivity and preferential sampling designs. Miner Eng 170:106923

Agar G (2000) Calculation of locked cycle flotation test results. Miner Eng 13:1533–1542
Aitchison J (2003) The statistical analysis of compositional data. Blackburn Press, Caldwell
Barnett RM, Deutsch CV (2012) Practical implementation of non-linear transforms for modeling geomet-

allurgical variables. Springer, Dordrecht
Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: a fresh approach to numerical computing.

SIAM Rev 59(1):65–98
Boisvert J, Rossi M, Ehrig K, Deutsch C (2013) Geometallurgical modeling at Olympic Dam Mine, South

Australia. Math Geosci 45
Bond F (1961) Crushing and grinding calculations parts 1 and 2. Br Chem Eng 6(378–385):543–548
Campos PHA, Costa JFCL, Koppe VC, Bassani MAA (2021) Geometallurgy-oriented mine scheduling

considering volume support and non-additivity. Min Technol 1–11
Carrasco P, Chilès JP, Séguret S (2008) Additivity, metallurgical recovery, and grade. VIII International

Geostatistics Congress, GEOSTATS 2008:1188
Chieregati A C, Delboni Jr H (2001) Nova metodologia de caracterização de minérios aplicada a projetos

de moinhos ag/sag. In VI SHMMT/XVIII ENTMME
Davidson-Pilon C (2015) Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Infer-

ence. Addison-Wesley Professional, 1st edition
Deutsch JL, Palmer K, Deutsch CV, Szymanski J, Etsell TH (2015) Spatial modeling of geometallurgical

properties: techniques and a case study. Nat Resour Res 25(2):161–181
Ge H, Xu K, Ghahramani Z (2018) Turing: a language for flexible probabilistic inference. International

conference on artificial intelligence and statistics, AISTATS 2018, 9–11 April 2018. Playa Blanca,
Lanzarote, Canary Islands, Spain, pp 1682–1690

Gelman A (2014) Bayesian data analysis. CRC Press, Boca Raton
Giraldo R, Delicado P, Mateu J (2010) Ordinary kriging for function-valued spatial data. Environ Ecol Stat

18(3):411–426

123



Math Geosci (2022) 54:1227–1253 1253

Hoffimann J (2018) Geostats.jl - high-performance geostatistics in Julia. J Open Source Software 3(24):692
Hoffimann J, Augusto J, Resende L,MathiasM,Mazzinghy D, Bianchetti M,MendesM, Souza T, Andrade

V, Domingues T, Silva W, Silva R, Couto D, Fonseca E, Gonçalves K (2022) Geomet dataset
Hoffimann J, Zortea M, de Carvalho B, Zadrozny B (2021) Geostatistical learning: Challenges and oppor-

tunities. Front Appl Math Stat 7
Hoffman MD, Gelman A (2014) The no-u-turn sampler: adaptively setting path lengths in Hamiltonian

monte Carlo. J Mach Learn Res 15:1593–1623
Journel AG (2003) Mining geostatistics. Blackburn Press, Caldwell
Menafoglio A, Guadagnini A, Secchi P (2014) A kriging approach based on Aitchison geometry for

the characterization of particle-size curves in heterogeneous aquifers. Stoch Env Res Risk Assess
28(7):1835–1851

Menafoglio A, Petris G (2016) Kriging for Hilbert-space valued random fields: the operatorial point of
view. J Multivar Anal 146:84–94

Menafoglio A, Secchi P, Rosa MD (2013) A Universal Kriging predictor for spatially dependent functional
data of a Hilbert Space. Electron J Stat 7(none):2209–2240

Napier-Munn T, Morrell S, Morrison R, Kojovic T (1999) Mineral comminution circuits their operation
and Optimisation. JKMRC Monograph Ser Mining Mineral Process 2

Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359
Rowland JCA (1975) The tools of power: how to evaluate grinding mill performance using the Bond work

index to measure grinding efficiency. In AIME Annual Meeting, Arizona
Tavares LM, Kallemback RD (2013) Grindability of binary ore blends in ball mills. Min Eng 41:115–120
Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3(1)

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123


	Modeling Geospatial Uncertainty of Geometallurgical Variables with Bayesian Models and Hilbert–Kriging
	Abstract
	1 Introduction
	2 Methodology
	2.1 Overview
	2.2 Bayesian Models
	2.2.1 Drop Weight Test
	2.2.2 Bond Work Index
	2.2.3 Locked Cycle Test

	2.3 Inference and Predictions
	2.3.1 Input Tables
	2.3.2 Bayesian Inference
	2.3.3 Predictions on Drill Holes

	2.4 Hilbert–Kriging
	2.4.1 Main Concepts
	2.4.2 Aitchison Space
	2.4.3 Variography
	2.4.4 Geostatistical Estimation


	3 Discussion
	3.1 Choice of Explanatory Variables
	3.2 Covariate Shift
	3.3 Compositing Restrictions
	3.4 Oversimplification of Physics
	3.5 Variable Scaling
	3.6 Binning Choices
	3.7 Laplace Smoothing
	3.8 Variogram Interpretation

	4 Conclusions
	Acknowledgements
	Appendix A DWT Is Not Linear
	References




